




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
地质年代的划分地质年代开始于前寒武纪。前寒武纪占地球历史的88%,结束于5.44亿年前。地质学家又把前寒武纪以后到现在的时间划分为古生代、中生代、新生代三个单元。古生代就是指远古早期有生命的时代,许多生活在古生代的动物都没有脊椎,也就是无脊椎动物。人们常常称中生代为恐龙时代,其实恐龙只是中生代众多生物中的一种,哺乳动物就是在中生代开始进化的。地球最近的代是新生代,它开始于6500万年前并持续到现在,新生代也叫哺乳动物时代,我们人类就生活在新生代。每个代又被划分为几个纪,例如三叠纪、侏罗纪、白垩纪,你可能很好奇这些纪的名字从哪里来的?它们的名字大多来自地质学家第一次发现这个地质年代的岩石和化石的地方。地质年代地球从形成、演化发展46亿年来, 留下了一部内容丰富的大自然的巨大史册,这就是各时代的地层。地质年代的划分是研究地球演化、了解各处地层所经历的时间和变化的前提。1881年,国际地质学会正式通过了至今通用的地层划分表,以后又不断进行修订、完善,形成了一张系统完整的地质年代表。地质学家常用放射性同位素测定法和古生物学两种方法来划分不同地质年代的地层。用放射性同位素测定的地层或岩石的年代,是地层或岩石的真实年龄,称为绝对地质年代;用古生物学方法测定的年代,只反映地层的早晚顺序和先后阶段,不说明具体时间,称为相对地质年代。把两种方法结合起来,就能更准确地反映地壳的演变历史。地质学家把地层分为六个阶段:即远太古代、太古代、元古代、古生代、 中生代和新生代。其中远太古代、太古代和元古代为地球的发展初期阶段,距今时间最远,经历时间也最长,当时的生物仅处于发生和孕育时期。进入古生代时,海洋里的生物已经相当多了,无论是植物还是动物都开始由低级向高级阶段进化。到了中生代和新生代,像恐龙、始祖鸟、鱼龙、古象等大型动物相继出现,地球生物界出现了空前的繁荣。为了深入揭示各地质年代中地层和生物界的特征, 地质学家又在“代”的下面划分出许多次一级的地质时代。如古生代自老到新可分为六个纪:寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪。中生代分为:三叠纪、侏罗纪和白垩纪。新生代分为:第三纪和第四纪。这些“纪”的名称听起来很古怪,但都各有各的来历。例如,在英国的威尔土地区,古时候曾居住过两个名叫“奥陶”和“志留”的民族,于是地质学家便把在这儿发现的两种标准地层称为“奥陶纪”和“志留纪”地层。又如,在德国和瑞士交界处的侏罗山里发现了另一种标准地层,就取名为“侏罗纪”地层。而“石炭纪”和“白垩纪”,则表明地层中含有丰富的煤层和白垩土,等等。地质年代单位是根据生物演化的不可逆性和阶段将地质时期划分为不同的时间单位,故又称为“地质时间单位”。按级别从大到小将地质时期划分为宙、代、纪、世、期、时等,其中宙、代、纪、世为国际性的地质时间单位,全球通用;期和时是区域性的地质时间单位,只适用于大的区域。宙是根据动物化石出现的情况,将整个地质时期划分为动物化石稀少的隐生宙和动物化石大量出现的显生宙。宙进一步划分为代。代是根据古生物演化的几个主要阶段划分的,隐生宙划分为太古代和元古代,显生宙划分为古生代、中生代和新生代。代可再分为纪。纪是基本的地质年代单位,它相当于形成一个“系”(基本地层单位)的时间,主要根据生物演化阶段性划分,延续时间一般为35007000万年,但第四系仅100300万年。世界最小的国际地质年代单位是纪的再分,一般为三分,称早、中、晚世,如早寒武世、中寒武世、晚寒武世;也有二分,称早、晚世,如早二叠世、晚二叠世。期和时为区域性地质年代单位。期是世的再分,相当于形成一个“阶”(区域性地层单位)的时间,大约为3001000万年。时是期的再分。地质年代学geochronology研究岩层形成的年代顺序及测定其年龄值的学科。地史学的一个分支。它与地层学、古生物学、构造地质学、矿物学、地球化学等密切相关。对地质年代学的研究可制定更准确的地质年表。地质年代学包括相对地质年代学和同位素地质年代学两大分支。相对地质年代学的研究对象,包括地层、岩石、古生物和古地磁。依据地层层序律,先形成的岩层位于下面,后形成的岩层位于上面,这可判定岩层形成的早晚;一些具有特殊性岩石或矿产的岩层,可作为确定相对地质年代的标志,如条带状磁铁石英岩只形成于太古宙至元古宙;生物地层法是利用化石来鉴定地层时代,生物界的演化由简单到复杂,由低级到高级,具有不可逆性和阶段性,在同一时期,生物界大体具有全球一致性,因此,化石是确定相对地质年代的重要手段;古地磁法是利用地磁极性正常和倒转的交替,编制地磁极性年代表,可确定相对地质年代。同位素地质年代学,又称绝对地质年代学。当岩浆冷凝,矿物、岩石结晶或重结晶时,放射性元素以某些形式进入矿物或岩石,在封闭体系中,放射性母体或子体同位素持续衰变和积累。只要准确地测定矿物和岩石中放射性母体和子体的含量,即可根据放射性衰变定律计算出岩石和矿物的年龄。地层层序律superpositionofstrata,lawof传统地层学的普遍性原理。又称叠覆原理。在层状岩层的正常层序中,先形成的岩层位于下面,后形成的岩层位于上面。依据这一原理,可判定岩层形成的先后。这一原理是丹麦地质学家N.斯泰诺于1669年首先提出来的。它是对沉积物单纯纵向堆积作用而言。但实际上还存在侧向堆积作用,而绝大部分沉积岩层是侧向进积和纵向加积两种作用的结果。因此,地层层序律对局部或单个地层剖面是适宜的,而对较大范围的区域就不一定适宜了。地球化学geochemistry研究地球(含部分天体)的化学组成、化学作用和化学演化的学科。地学和化学结合的产物。地球化学的发展约有3个时期。萌芽期,1838年,德国化学家C.F.舍恩拜因首先提出地球化学这个名词。19世纪中叶以后,分析化学方法日益进步、化学元素周期律的发现以及原子结构理论的重大突破,为地球化学的形成奠定了基础。形成期,1908年美国F.W.克拉克发表地球化学资料一书,广泛地汇集和计算了地壳及其各部分的化学组成,明确提出地球化学应研究地球的化学作用和化学演化,为地球化学的发展指出了方向。发展期,50年代以后,地球化学除继续把矿产资源作为重要研究对象以外,还开辟了环境保护、地震预报、海洋开发、生命起源、地球深部和地外空间等领域的研究。地球化学的研究内容有:研究地球和地质体中元素及其同位素的组成,定量测定元素及其同位素在地球各部分(水圈、气圈、生物圈、岩石圈和地幔等)中的分布。研究地球表面和内部及某些天体中进行的化学作用,揭示元素及其同位素的迁移、富集和分散规律。研究地球乃至天体的化学演化,即研究地球各层圈中化学元素的平衡、旋回,在时间和空间上的变化规律。基于研究对象和手段不同,地球化学形成了许多分支学科,包括元素地球化学、同位素地球化学、有机地球化学、天体化学、环境地球化学、矿床地球化学、区域地球化学和勘查地球化学等。本学科的研究方法,综合了地质学、化学和物理学等的方法和技术,形成一套完整和系统的地球化学研究方法。包括野外地质观察、采样;天然样品的元素、同位素组成分析和存在状态研究;元素迁移、富集地球化学过程的实验模拟等。地球化学研究范围经历了由大陆转向海洋,由地壳表部转向深部,由地球转向地外空间的转变。低温地球化学、地球化学动力学、超高压地球化学、稀有气体地球化学、比较行星地球化学将有更大远景。构造地质学structuralgeology研究岩石圈内地质体的形成、形态和变形构造作用的成因机制及其相互间影响、时空分布和演化规律的学科。地质学的一个重要分支。狭义的构造地质学一般限于形变和变形机制的研究,广义的构造地质学还包括大地构造学。简史构造地质学最先是对构造要素即褶皱与断裂的形态、变形组合的认识和分析,而后又结合岩石组合特征来研究构造演化历史、变形期次与阶段以及动力机制和成因模式,因此总与地质构造学说、假说相联系。1859年J.霍尔提出沉积重力负荷导致北美阿巴拉契亚山脉呈槽形特征的古生代沉积区的下沉,1873年J.D.丹纳把这种槽形构造命名为地槽,并认为是地球因冷缩而在大陆边缘出现的凹陷带。地槽概念的出现标志着现代构造地质学的起点。1887年M.贝特朗提出造山旋回的概念。18831903年E.修斯在其著作地球的面貌一书中发展了沉积建造的时空分带理论,从而使地槽地台学说得以建立;并奠定了20世纪前半叶的地质学研究的基础;从构造运动角度看,地槽地台学说是垂直论的代表,也是固定论的思想萌芽。1912年A.L.魏格纳提出了代表水平论和活动论观点的大陆漂移说,从而揭开了与垂直论、固定论论战的序幕。1928年A.霍姆斯提出了地壳以下物质热对流假说,支持了大陆漂移说,1924年德国地质学家W.H.施蒂勒提出了造山幕及其世界同时性的学说,支持了地槽学说造山理论,1936年他进一步把地槽划分为正地槽与准地槽,把正地槽又分为优地槽和冒地槽,显示了构造地质学在造山作用理论与岩石建造学说等方面的重大发展,使得地槽地台学说成为20世纪前半叶地质科学的主导理论。60年代以后,大陆漂移说重新崛起,并随着海底扩张说、转换断层等概念的相继提出,板块构造理论体系形成。这是现代地球科学理论的一场革命,由此引起了对地质学中原有的基本原则和规律的重新思考和再认识。80年代地体学说的提出又进一步充实和推进了构造地质学的研究。20世纪50年代创立的构造物理学,60年代以后,以J.G.兰姆赛为代表提出的有限应变概念以及从40年代开始进行的岩石变形的物理实验,70年代开展的地球动力学模拟实验和描述计算等均大大提高了构造变形机制定量研究的实践性,扩大了构造成因机制的研究基础,对构造地质学的发展起了重要的促进作用。研究内容构造地质学主要研究地质体的次生构造及其成因和演化,同时也进行构造作用环境的重建和反演的研究,二者又可概称为改造和建造。各种构造作用主要集中在岩石圈内,故岩石圈又称构造圈;岩石圈板块运动是构造演化的主因,因此构造地质学研究必须着眼于全球整体的地质演化规律与特定的形成环境相结合。持续不断的构造作用使地表和地下各种地质体发生形变,如岩层的弯曲和断裂;地表升降造成山脉、高原和盆地;地表遭剥蚀和盆地内沉积;岩浆侵入和火山喷发等等,它们的变形、变位、相互关系以及成因机制和形成环境都是构造地质学的研究内容;研究对象的尺度自矿物晶格位错至巨大造山带的形成。由构造作用决定的原生构造现象是构造地质学研究的另一内容,如造山带的位置和形态、盆地的形态和分布、各种构造层次的变质作用与分带、不同成因的岩浆岩侵位和火山活动条件等本身特征。构造地质学还研究与板块运动有关的运动学和动力学问题,如板块俯冲碰撞所产生的陆壳增厚机制,挤压推覆构造、伸展构造、走滑构造等。代 纪 世 Ma显 生宙新 生代 第 四 纪全新世1.6523.5651352052452953604104355005401000160025003800更新世晚中早第 三纪新第三纪上新世中新世老第三纪渐新世始新世古新世中 生代 白 垩 纪晚白垩世早白垩世 侏 罗 纪晚侏罗世中侏罗世早侏罗世 三 叠 纪晚三叠世中三叠世早三叠世古 生代 二 叠 纪晚二叠世早二叠世 石 炭 纪晚石炭世早石炭世 泥 盆 纪晚泥盆世中泥盆世早泥盆世 志 留 纪晚志留世中志留世早志留世 奥 陶 纪晚奥陶世中奥陶世早奥陶世 寒 武 纪晚寒武世中寒武世早寒武世元 古宙新元古代NeoproterozoicCryogenianTonian中元古代StanianEctasianCalymmian古元古代StaitherianOrosirianRhyacianSiderian太古宙Archean冥古宙地质年代表按适用范围分有:国际性地质年代表和地方性地质年代表。国际性地质年代表是将地球上的各种地质事件,按其发生的先后顺序,进行系统地时代编排后列出的反映地质历史的时间表。在国际性地质年代表的基础上,根据某区域的地质特点,将该区域中发生的各种地质事件按其发生的先后顺序编排出来的地质历史时间表,称为地方性地质年代表.按时代顺序编排的依据分有:生物地层年代表、同位素年龄年代表及地磁性年代表。1、 生物地层及同位素年龄地质年代表是根据地层层序律和生物层序律将世界各地的地层进行系统划分和对比后,按一定的时代单位编排,并将各时代的地层分别作放射性同位素年代测定,而建立起来的。地质年代所使用的时代单位和地层单位如下:地质年代表 自19世纪以来,人们在长期实践中进行了地层的划分和对比工作,并按时代早晚顺序把地质年代进行编年、列制成表。早先进行这样的工作,只是根据生物地层学的方法,进行相对地质年代的划分,相对地质年代反映了地球历史发展的顺序、过程和阶段,包括无机界和生物界的发展阶段。自从同位素年龄测定取得进展以后,对于地质年代的划分起了很重要作用。因为相对地质年代只能表明地层的先后顺序和发展阶段,而不能指出确切的时间,从而无法确立地质时代无机界和生物界的演化速度。但有了同位素年龄资料,这个问题便解决了。并且,在古老岩层中由于缺少或少有生物化石,对于这样的地层和地质年代的划分经常遇到很大困难,而同位素地质年龄的测定则大大推动了古老地层的划分工作。但是,应该指出,相对地质年代和同位素地质年龄二者是相辅相成的,却不能彼此代替,因为地质年代的研究,不是简单的时间计算,而更重要的是地球历史的自然分期,力求表明地球历史的发展过程和阶段,同位素地质年龄有助于使这一工作达到日益完善的地步。我们把表示地史时期的相对地质年代和相应同位素年代值的表,称为地质年表,或称地质年代表、地质时代表。1913年英国地质学家A.霍姆斯提出第一个定量的(即带有同位素年龄数据的)地质年表,以后又陆续出现不同时间、不同国家、不同学者提出的地质年表。目前比较通用的地质年表见表1-8。表1-8地质年代简表据王鸿桢、李光岑中国地层时代表(1990)简化此地质年表为一简表,按照生物演化阶段及地层形成的时代顺序,表中列出宙、代和纪,即地质时代从古至今共划分为冥古宙、太古宙、元古宙和显生宙。其中元古宙又划分为古元古代、中元古代和新元古代;显生宙划分为古生代、中生代和新生代。其中新元古代的晚期,划分出一个震旦纪,目前只适用于中国;古生代划分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪;中生代划分为三叠纪、侏罗纪和白垩纪;新生代划分为第三纪和第四纪。纪以下还可以再划分为世,除去震旦纪、二叠纪、白垩纪等是二分外,其余均按三分法,如寒武纪分为早寒武世、中寒武世、晚寒武世,奥陶纪分为早奥陶世、中奥陶世、晚奥陶世,;但石炭纪原来也是按三分法分为早、中、晚石炭世,近来顷向于按二分法分为早、晚石炭世;至于第三纪和第四纪所划分的世则另有专称,如古新世、始新世更新世、全新世等,所有关于世的划分,此表一概从略。所有与地质时代单位(宙、代、纪、世)相对应的地层单位(宇、界、系、统),如太古宙形成的地层称太古宇,古生代形成的地层称为太古界,寒武纪形成的地层称为寒武系,早、中、晚寒武世形成的地层分别称为下、中、上寒武统,凡此本表也都从略。各个地质时代单位都标有英文字母代号,宙(宇)的符号采用两个大写字母,如太古宙(宇)的代号为AR;代(界)的代号也是两个字母,但第一个字母大写,第二个字母小写,如古生代(界)的代号为Pt;纪(系)的代号都是采用一个大写字母,如奥陶纪为O,志留纪为S,等等,这些代号都是各自英文名称的缩写。地质年表的各有关地质时代都列出“距今年龄值”,表的右侧列出与地质时代相应的生物演化阶段。关于地质历史演化的具体情况,将在本书的最后一部分予以介绍。地质年代表 (单位:百万年)古生代前寒武代:600564寒武系前期:564535中期:535515后期:515500奥陶系500436老留系436409泥盆系前期:409389中期:389378后期:378360石炭系前期:360335后期:335284二叠系284250中生代三叠系前期:242237中期:237229后期:229208侏罗系前期中期:208159后期:159140白垩系前期:14094后期:9464新生代第 三系古第三系萌新期:6453.5初新期:53.537渐新期:3724新第三系中新期前期:2415中期:1510后期:105新新期:51.7第四系更新期或(全新期或冲积期及现代)地质年代表及相应动植物出现时代与进化程序表宙 代 纪 世 代号 距今大约年代(百万年) 主要生物进化 动物 植物 显生宙新生代Kz 第四纪 全新世 Q 1 2.5 5 24 37 58 65 137 203 251 295 355 408 435 495 540 650 1000 1800 2500 2800 3200 3600 4600 人类出现 现代植物时代 更新世 新近纪 上新世 N 哺乳动物时代 古猿出现 灵长类出现 被子植物时代 草原面积扩大 被子植物繁殖 中新世 古近纪 渐新世 E 始新世 古新世 中生代Mz 白垩纪 K 爬行动物时代 鸟类出现 恐龙繁殖 恐龙、哺乳类出现 裸子植物时代 被子植物出现 裸子植物繁殖 侏罗纪 J 三叠纪 T 古 生 代Pz 二叠纪 P 两栖动物时代 爬行类出现 两栖类繁殖 孢子植物时代 裸子植物出现 大规模森林出现 小型森林出现 陆生维管植物 石炭纪 C 泥盆纪 D 鱼类时代 陆生无脊椎动物发展和 两栖类出现 志留纪 S 奥陶纪 O 海生无 脊椎动物时代 带壳动物爆发 寒武纪 元古宙 新元古 震旦纪 Z 软躯体动物爆发 Pt 低等无脊椎动物出现 高级藻类出现 海生藻类出现 中元古 古元古 太古宙 新太古 Ar 原核生物(细菌、蓝藻)出现 (原始生命蛋白质出现) 中太古 古太古 始太古 地質年代表 Geological Time ScaleGeological Time ScaleEON代ERA紀PERIOD 世EPOCH距今大約年代(百萬年)MILLION YEARS顯生宙Phanerozoic新生代Cenozoic第四紀Quaternary全新世Holocene現代Today-0.01更新世Pleistocene0.01-1.8第三紀Tertiary上新世Pliocene1.8-5.3中新世Miocene5.3-23漸新世Oligocene23-36.5始新世Eocene36.5-53古新世Palaeocene53-65中生代Mesozoic白堊紀Cretaceous-65-145侏羅紀Jurassic-145-208三疊紀Triassic-208-248古生代Palaeozoic二疊紀Permian-248-290石炭紀Carboniferous-290-360泥盆紀Devonian-360-410志留紀Silurian-410-438奧陶紀Ordovician-438-510寒武紀Cambrian-510-570元古宙Precambrian元古代Proterozoic震旦紀Sinian-570-800- 800-2,500太古宙Archaean太古代Archaeozoic-2,500-4,600A.魚類 Fishes, 2, 3B.鯊魚牙 Shark Teeth, 2 C.海洋生物 Sea Life, 2, 3D.三葉虫 Trilobites, 2, 3, 4, 5E.恐龍 Dinosaurs, 2, 3, 4 , 5 F.其他動物 Other Animals, 2G.昆虫 Insects, 2 H.植物 PlantsI.太空隕石 Meteorite, 2化石書籍 Fossils Book 地质年代名称的由来今天一个上过初中的人都可能知道地球有46亿年的历史了,而且许多人还可能了解地层形成的基本过程和原理。另外近些年来人们对“寒武纪”、“侏罗纪”、“白垩纪”、“第四纪”这样的词也比较熟悉了,但是这些名词是如何来的恐怕很多人只是个较朦胧的印象吧?大家知道按地层的年龄将地球的年龄划分成一些单位,这样可便于我们进行地球和生命演化的表述。人们习惯于以生物的情况来划分,这样就把整个46亿年划成两个大的单元,那些看不到或者很难见到生物的时代被称做隐生宙,而将可看到一定量生命以后的时代称做是显生宙。隐生宙的上限为地球的起源,其下限年代却不是一个绝对准确的数字,一般说来可推至6亿年前,也有推至5.7亿年前的。从6亿或5.7亿年以后到现在就被称做是显生宙。宙下被划分为一些代。通常的分法大致有:太古代、元古代、古生代、中生代、新生代五个代。太古代一般指的是地球形成及化学进化这个时期,可以是从46亿年前到38亿年前或34亿年前,这个数字之所以有数以亿计的年数之差是因为我们目前所能掌握的最古老的生命或生命痕迹还有许多的不确定因素。元古代紧接在太古代之后,其下限一般定在前寒武纪生命大爆发之前,这个时期目前在5.7亿到6亿年前。太古代和元古代这两个名称是1863由美国人洛冈命名的,他命名的意思是指生物界太古老和生物界次古老。自寒武纪后到2.3亿年前这段时间为古生代,这个名称由英国人赛德维克制定,他依照洛冈取了生物界古老的意思,此事发生在1838年。从2.3亿年前到0.65亿年前为中生代,从0.65亿年后到现在为新生代。这两个代均由英国人费利普斯于1841年命名,取意分别为生物界中等古老和生物界接近现代。(见附表)代以下的划分单元为纪。让我们从最古老的一个纪开始吧。最古老的纪叫震旦纪,由美籍人葛利普于1922年在中国命名,葛氏当时活动在浙、皖一带,他按照古代印度人称呼中国为日出之地而取了这个名称。起于18或19亿年前,止于5.7亿年前。这个时期的生命主要是细菌和蓝藻,后期开始出现真核藻类和无脊椎动物。1936年赛德维克在英国西部的威尔士一带进行研究,在罗马人统治的时代,北威尔士山曾称寒武山,因此赛德维克便将这个个时期称为寒武纪。33年以后,另一位英国地质学家拉普华兹在同一地区发现一个地层,这个与较早发现的志留纪与寒武纪相比有着诸多不同的地方,它介入上述两个层之间,显然是属于一个不同的有代表性的时期,因此他根据一个古代在此居住过的民族名将这个时期称为奥陶纪。志留纪的名称的产生比寒武纪和奥陶纪都要早,大约是在1835年,莫企孙也是在英国西部一带进行研究,名称的意思来源于另一个威尔士古代当地民族的名称。莫氏和赛德维克于1839年在德文郡(Devonshire)将一套海成岩石层按地名进行了命名,中文翻译为“泥盆”。石炭这个名称的出现可能是最早的,1822年康尼比尔和费利普斯在研究英国地质时,发现了一套稳定的含煤炭地层,这是在一个非常壮观的造煤时期形成的,因此因煤炭而得名。二叠纪这个名称是我国科学家按形象而翻译的,最初命名时是在1841年,由莫企孙根据当地所处彼尔姆州(俄乌拉尔山乌法高原)将其命名为彼尔姆纪。后来在德国发现这个时期的地层明显为上是白云质灰岩下是红色岩层,这也是我国后来翻译成二叠纪的根据。以上为古生代的六个纪。中生代为三个纪。第一个是三叠纪,由阿尔别尔特命名于德国西南部,这里有三套截然不同的地层,因此得名,此事在1834年。在德国和瑞士的与瑞士交界处有一座侏罗山,1829年前后布朗维尔在这里研究发现该处有非常明显的地层特征,因此以山命名,如果1820年英国人史密斯首先命名的话,现在肯定不会是侏罗纪这个名称,因为他当时在英国面部研究的菊石正好就是这个时期的。两年后的1822年,德哈罗乌发现英吉利海峡两岸悬崖上露出含有大量钙质的白色沉积物,这恰恰是当时用来制作粉笔的白垩土,于是便以此命名为白垩纪。需要指出的是,世界上大多地区该时期的地层并不都是白色的,如在我国就是多为紫红色的红层。莱尔曾经将古生代称第一纪,中生代为第二纪,新生代为第三纪,1829年德努阿耶在研究法国某些地区的地质时按魏尔纳的分层方案从第三纪中又划分出来了第四纪,这样,新生代便由这两个纪所组成。从前的第一纪则由纪升代含六个纪,同样第二纪也升代含三个纪。纪下面还有分级单位,如“世”,一般是将某个纪分成几个等份,如新生代依次分为古新世、始新世、渐新世、中新世、上新世、更新世、全新世等。宙代纪世距今年数生物的进化显 生宙新 生代第四纪全新世1万人类时代现代动物现代植物更新世200万第三纪上新世600万被子植物和兽类时代中新世2200万渐新世3800万始新世5500万古新世6500万中生代白垩纪1.37亿裸子植物和爬行动物时代侏罗纪1.95亿三迭纪2.30亿古 生代二迭纪2.85亿蕨类和两栖类时代石炭纪3.50亿泥盆纪4.05亿裸蕨植物鱼类时代志留纪4.40亿奥陶纪5.00亿真核藻类和无脊椎动物时代寒武纪6.00亿隐 生宙元古震旦纪13.0亿19.0亿细菌藻类时代34.0亿太古46.0亿地球形成与化学进化期50亿太阳系行星系统形成期地质年代正如论述人类社会的发展历史,可以社会发展的主要事件,(如不同朝代,不同的社会阶段作为时间的概念。类似于社会年代,对整个地球发展演化的历史,对地质历史,对地质历史中发生的地质事件的论述、记述、研究也需要一套相应的地质年代。相对年代(地质事件发生的先后顺序)绝对年代(地质事件发生的时间距今多少年)地质年代.相对年代的确定 相对年代的确定就是要判断一些地质事件发生的先后关系。这些地质事件保留在地质历史留下的物质纪录中。可根据几个基本原则来判断,地层层序律、生物层序律及切割穿插定律。一、 地层层序律 Law of superposition1. 岩层 层状岩石。(包括沉岩、层状变质岩、层状火山岩)。 2 地层Stratum在一定地质时期内所形成的层状岩石。 地层岩层时间(年代) 3 地层层序律原始产出的地层具有下老上新的层序规律。 (地层形成时是水平或近于水平的,先形成的位于下部,后形成的位于其上部)注意:原始产出的下老上新,并非现在野外见到的地层都是下老上新,其中又有后期地壳运的改造。对于后期地壳运动使地层变动(倾斜、倒转)的地层层序可用沉积构造中的层面构造(波痕、泥裂、有痕等)作为“示底构造”恢复顶底后,判断先后顺序。二、 生物层序律 地质历史中生物在地层中留下纪录,这就是化石。 化石埋藏在岩层中的地历史时期的生物遗体或遗迹,(硬体、壳、骨、蛋及活动痕迹)。保留了生物的硬体结构。(今后详细讲)人类对现代生物及古生物研究,生命的研究认识到生物的演化是从简单到复杂、从低级到高级不断发展,不可逆的演化的。这就是生物的演化规律。 我们可以根据含有化石的地层中化石生物的特征来推断地层相对年代或先后顺序,这就是依据“生物层序律”Law of faunal succession.年代越老的地层中所含生物越原始,越简单、越低级;年代越新的地层所含生物越进步、越复杂、越高级。不同时期地层中含有不同类型的化石及其组合,而相同时期且在相同相通的地理环境下所形成的地层(只要原先海或陆相通,无论相距多远)都含有相同的化石及其组合。运用地层层序律和生物层序律对地层相对年代的确定其实际工作就是地层的划分和对比。地层划分根据地层特征按照从老到新的层序,划分出各地层阶段(单位)。地层对比不同地区时代和层序的对比。标准化石地史中,演化快,延续时间短,特征显著,数量多,分布广的生物 化石。切割定律或穿插关系以上两定律主要对地层(层状岩石)。对于侵入体之间或侵入体与围岩之间的相对年代(顺序)不适用,应使用切割定律。切割定律侵入者年代新,被侵入者年代老,切割者年代新,被切割者年代老。+2.同位素年龄(绝对年龄)的确定人们很早就一直在探索测定年龄(绝对年代)的方法,直到放射性元素发现之后,才能找到了令人信服的有科学依据的测年方法,这就是同位素测年。原理:根据保存在岩石中的放射性元素的母体同位素的含量和子体同位素的含量分析,多长时间才能有这样子体和母体的比例,关键是放射性元素的固定的衰变常数。 T=1/Ln(1+d/n) 衰变常数其计算出的是该同位素的形成年龄,也就代表了所在岩石的形成年龄。为了保证测年精度(准确性)用于测年的元素应具备 长半衰期; 在岩石中易分离,含量较大; 易保存不易在地史中丢失。常用的测年同位素 K Ar Rb Sr U Pb 年代新(新生代或考古)常用C14注意:同位素测年方法、原理科学性强,但由于D、N的含量不易测试或地史中 保留不全(丢失),故存在测年误差。地史记年以百万年为单位。3.地质年代表有了划分相对年代,绝对年龄的原则,就可以按年代的顺序把地质历史进行系统性编年。一、编年单位编年首先确定年代的单位,然后编制出年代表地质单位 年代地层单位 宙eon 宇eontherm 代era 界erratum 纪period 系system 世epoch 统series (期) (阶)二、地质年代表(略)三、岩石地层单位 地层的物质组成是岩石(岩层),在地层划分对比中,对一个地区首先根据岩石特征把地层分层,分层的单位为岩石地层单位: 群group 组formation最基本的岩石地层单位 段member 层stratum生命的演化历程生命的起源生命的起源应当追溯到与生命有关的元素及化学分子的起源。因而,生命的起源过程应当从宇宙形成之初、通过所谓的“大爆炸”产生了碳、氢、氧、氮、磷、硫等构成生命的主要元素谈起。大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系。作为太阳系一员的地球也在46亿年前形成了。接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态。高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致。生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙。藻类和无脊椎动物时代前寒武纪太古宙(Archean)是最古老的地史时期。从生物界看,这是原始生命出现及生物演化的初级阶段,当时只有数量不多的原核生物,他们只留下了极少的化石记录。从非生物界看,太古宙是一个地壳薄、地热梯度陡、火山岩浆活动强烈而频繁、岩层普遍遭受变形与变质、大气圈与水圈都缺少自由氧、形成一系列特殊沉积物的时期;也是一个硅铝质地壳形成并不断增长的时期,又是一个重要的成矿时期。元古宙(Proterozoic)初期地表已出现了一些范围较广、厚度较大、相对稳定的大陆板块。因此,在岩石圈构造方面元古代比太古代显示了较为稳定的特点。早元古代晚期的大气圈已含有自由氧,而且随着植物的日益繁盛与光合作用的不断加强,大气圈的含氧量继续增加。元古代的中晚期藻类植物已十分繁盛,明显区别于太古代。 震旦纪(Sinian period)是元古代最后期一个独特的地史阶段。从生物的进化看,震旦系因含有无硬壳的后生动物化石,而与不含可靠动物化石的元古界有了重要的区别;但与富含具有壳体的动物化石的寒武纪相比,震旦系所含的化石不仅种类单调、数量很少而且分布十分有限。因此,还不能利用其中的动物化石进行有效的生物地层工作。震旦纪生物界最突出的特征是后期出现了种类较多的无硬壳后生动物,末期又出现少量小型具有壳体的动物。高级藻类进一步繁盛,微体古植物出现了一些新类型,叠层石在震旦纪早期趋于繁盛,后期数量和种类都突然下降。再从岩石圈的构造状况来看,震旦纪时地表上已经出现几个大型的、相对稳定的大陆板块,之上已经是典型的盖层沉积,与古生界相似。因此,震旦纪可以被认为是元古代与古生代之间的一个过渡阶段。寒武纪 三叶虫时代寒武纪(Cambrian period)是古生代的第一个纪,开始于距今5.4亿年,延续了4000万年。寒武纪是生物界第一次大发展的时期,当时出现了丰富多样且比较高级的海生无脊椎动物,保存了大量的化石,从而有可能研究当时生物界的状况,并能够利用生物地层学方法来划分和对比地层,进而研究有机界和无机界比较完整的发展历史。比较著名的有早寒武世云南的澄江动物群、加拿大中寒武世的布尔吉斯页岩生物群。寒武纪的生物界以海生无脊椎动物和海生藻类为主。无脊椎动物的许多高级门类如节肢动物、棘皮动物、软体动物、腕足动物、笔石动物等都有了代表。其中以节肢动物门中的三叶虫纲最为重要,其次为腕足动物。此外,古杯类、古介形类、软舌螺类、牙形刺、鹦鹉螺类等也相当重要。抛开牙形石不说,高等的脊索动物还有许多其他代表,如我国云南澄江动物群中的华夏鳗、云南鱼、海口鱼等,加拿大布尔吉斯页岩中的皮开虫,美国上寒武统的鸭鳞鱼。腔肠动物布尔吉斯动物群(Ayshea)水母状动物节肢动物(Marrella)节肢动物(Leanchoilia)节肢动物奥陶纪 原始的脊椎动物出现奥陶纪(Ordovician period)是古生代的第二个纪,开始于距今5亿年,延续了6500万年。奥陶纪是地史上海侵最广泛的时期之一。在板块内部的地台区,海水广布,表现为滨海浅海相碳酸盐岩的普遍发育,在板块边缘的活动地槽区,为较深水环境,形成厚度很大的浅海、深海碎屑沉积和火山喷发沉积。奥陶纪末期曾发生过一次规模较大的冰期,其分布范围包括非洲,特别是北非、南美的阿根廷、玻利维亚以及欧洲的西班牙和法国南部等地。奥陶纪的生物界较寒武纪更为繁盛,海生无脊椎动物空前发展,其中以笔石、三叶虫、鹦鹉螺类和腕足类最为重要,腔肠动物中的珊瑚、层孔虫,棘皮动物中的海林檎、海百合,节肢动物中的介形虫,苔藓动物等也开始大量出现。奥陶纪中期,在北美落基山脉地区出现了原始脊椎动物异甲鱼类星甲鱼和显褶鱼,在南半球的澳大利亚也出现了异甲鱼类。植物仍以海生藻类为主。蠕形石虾(Helminthochiton)直角石(Orthoceras)弓形角石(Cyrtoceras)休伦角石(Huronia)肋棘海林檎(Pleurocystes)肋棘海林檎(Pleurocystes)裸蕨植物和鱼类时代志留纪 笔石的时代,陆生植物和有颌类出现志留纪(Silurian period)是早古生代的最后一个纪。本纪始于距今4.35亿年,延续了2500万年。由于志留系在波罗的海哥德兰岛上发育较好,因此曾一度被称为哥德兰系。志留系三分性质比较显著。一般说来,早志留世到处形成海侵,中志留世海侵达到顶峰,晚志留世各地有不同程度的海退和陆地上升,表现了一个巨大的海侵旋回。志留纪晚期,地壳运动强烈,古大西洋闭合,一些板块间发生碰撞,导致一些地槽褶皱升起,古地理面貌巨变,大陆面积显著扩大,生物界也发生了巨大的演变,这一切都标志着地壳历史发展到了转折时期。志留纪的生物面貌与奥陶纪相比,有了进一步的发展和变化。海生无脊椎动物在志留纪时仍占重要地位,但各门类的种属更替和内部组分都有所变化。如笔石动物保留了双笔石类,新兴的单笔石类也很繁盛;腕足动物内部的构造变得比较复杂,如五房贝目、石燕贝目、小嘴贝目得到了发展;软体动物中头足纲、鹦鹉螺类显著减少,而双壳纲、腹足纲则逐步发展;三叶虫开始衰退,但蛛形目和介形目大量发展;节肢动物中的板足鲎,也称“海蝎”在晚志留世海洋中广泛分布;珊瑚纲进一步繁盛;棘皮动物中海林檎类大减,海百合类在志留纪大量出现。 脊椎动物中,无颌类进一步发展,有颌的盾皮鱼类和棘鱼类出现,这在脊椎动物的演化上是一重大事件,鱼类开始征服水域,为泥盆纪鱼类大发展创造了条件。植物方面除了海生藻类仍然繁盛以外,晚志留世末期,陆生植物中的裸蕨植物首次出现,植物终于从水中开始向陆地发展,这是生物演化的又一重大事件。宽角螺(Platyceras)细网笔石(reliortes)全脐螺(Euomphalus)双股海百合(Dimerocrinites)神螺(Bellerophon)星苔藓虫(Constellania)泥盆纪 鱼类的时代泥盆纪(Devonian period)是晚古生代的第一个纪,开始于距今4.1亿年,延续了约5500万年。泥盆纪古地理面貌较早古生代有了巨大的改变。表现为陆地面积的扩大,陆相地层的发育,生物界的面貌也发生了巨大的变革。陆生植物、鱼形动物空前发展,两栖动物开始出现,无脊椎动物的成分也显著改变。腕足类在泥盆纪发展迅速,志留纪开始出现的石燕贝目成为泥盆纪的重要化石。此外,穿孔贝目、扭月贝目、无洞贝目和小嘴贝目在划分和对比泥盆纪地层中也极为重要。泡沫型和双带型四射珊瑚相当繁盛。早泥盆世以泡沫型为主,双带型珊瑚开始兴起;中、晚泥盆世以双带型珊瑚占主要地位。鹦鹉螺类大大减少,菊石中的棱菊石类和海神石类繁盛起来。正笔石类大部分绝灭,早泥盆世残存少量单笔石科的代表。竹节石类始于奥陶纪,泥盆纪一度达到最盛,泥盆纪末期绝灭。其中以薄壳型的塔节石类最繁盛,光壳节石类也十分重要。牙形石演化到泥盆纪又进入一个发展高峰,这个时期以平台型分子大量出现为特征。昆虫类化石最早也发现于泥盆纪。泥盆纪是脊椎动物飞越发展的时期,鱼类相当繁盛,各种类别的鱼都有出现,故泥盆纪被称为 “鱼类的时代”。早泥盆世以无颌类为多,中、晚泥盆世盾皮鱼相当繁盛,它们已具有原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版社区老年人营养配餐服务合同范本
- 2025年二手房买卖合同补充条款及房屋交易合同备案服务协议
- 2025版商铺转租租赁物使用限制与责任界定合同
- 2025版科技项目研发成果托管合作协议
- 2025年度自流平地板买卖合同范本
- 2025版虚拟现实产业发展担保合同
- 2025版牲畜养殖企业承包与养殖产业链合作合同
- 2025年互联网企业知识产权抵押贷款合同
- 2025东莞租赁合同范本(含租赁期限延长)
- 2025版新能源发电设备采购与现场安装维护合同
- 手术室护理相关知识100问课件
- 卫生部《病历书写基本规范》解读(73页)
- 生物必修一课程纲要
- 南方332全站仪简易使用手册
- 人民调解员培训讲稿村级人民调解员培训.doc
- 高低压配电安装工程-技术标部分(共41页)
- 监理规划编制案例
- 文献检索外文数据库
- 图画捉迷藏-A4打印版
- 受限空间作业票
- 盘扣式外脚手架施工方案
评论
0/150
提交评论