概率作业纸第二章答案.doc_第1页
概率作业纸第二章答案.doc_第2页
概率作业纸第二章答案.doc_第3页
概率作业纸第二章答案.doc_第4页
概率作业纸第二章答案.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率论与数理统计标准作业纸 班级 学号 姓名第一章 随机事件及其概率第三节 事件的关系及运算一、 选择1.事件表示 ( C ) (A) 事件与事件同时发生 (B) 事件与事件都不发生(C) 事件与事件不同时发生 (D) 以上都不对2.事件,有,则( B ) (A) (B) (C) (D)二、填空1.设表示三个随机事件,用的关系和运算表示仅发生为中正好有一件发生为中至少有一件发生为第四节 概率的古典定义一、选择1将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A) (B) (C) (D)二、填空1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为。三、简答题1将3个球随机地投入4个盒子中,求下列事件的概率(1)A-任意3个盒子中各有一球;(2)B-任意一个盒子中有3个球;(3)C-任意1个盒子中有2个球,其他任意1个盒子中有1个球。解:(1) (2) (3)第五节 概率加法定理一、选择1.设随机事件和同时发生时,事件必发生,则下列式子正确的是( C )(A) (B)(C) (D)2.已知, , 。则事件、全不发生的概率为( B )(A) (B) (C) (D) 3.已知事件、满足条件,且,则( A )(A) (B) (C) (D) 二、填空1.从装有4只红球3只白球的盒子中任取3只球,则其中至少有一只红球的概率为 (0.97)2.掷两枚筛子,则两颗筛子上出现的点数最小为2的概率为 0.25 3.袋中放有2个伍分的钱币,3个贰分的钱币,5个壹分的钱币。任取其中5个,则总数超过一角的概率是 0.5 三、简答题1一批产品共20件,其中一等品9件,二等品7件,三等品4件。从这批产品中任取3件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率。解:设事件表示取出的3件产品中有2件等品,其中=1,2,3; (1)所求事件为事件、的和事件,由于这三个事件彼此互不相容,故=0.671 (2)设事件表示取出的3件产品中至少有2件等级相同,那么事件表示取出的3件产品中等级各不相同,则第六节 条件概率、概率乘法定理一、选择1.事件为两个互不相容事件,且,则必有( B ) (A) (B) (C ) (D) 2.将一枚筛子先后掷两次,设事件表示两次出现的点数之和是10,事件表示第一次出现的点数大于第二次,则( A )(A) (B) (C ) (D) 3.设、是两个事件,若发生必然导致发生,则下列式子中正确的是( A )(A) (B) (C) (D)二、填空1.已知事件的概率=0.5,事件的概率=0.6及条件概率=0.8,则和事件的概率 0.7 2.是两事件,则 三、简答题1.猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离便成为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米。假定最多进行三次射击,设击中的概率与距离成反比,求猎人击中动物的概率。解:设第次击中的概率为 ,(=1,2,3)因为第次击中的概率与距离成反比, 所以设,(=1,2,3); 由题设,知,代入上式,得到 再将代入上式,易计算出, 设事件表示猎人击中动物,事件表示猎人第次击中动物(=1,2,3),则所 求概率为: 第七节 全概率公式一、选择1袋中有5个球,3个新球,2个旧球,现每次取一个,无放回的取两次,则第二次取到新球的概率为 ( A )(A) (B) (C ) (D ) 2.若随机事件和都不发生的概率为,则以下结论中正确的是( C )(A)和都发生的概率等于 (B) 和只有一个发生的概率等于(C)和至少有一个发生的概率等于(D)发生不发生或发生不发生的概率等于二、填空1.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为2.老师提出一个问题,甲先回答,答对的概率是0.4;如果甲答错了,就由乙答,乙答对的概率是0.5;如果甲答对了,就不必乙回答,则这个问题由乙答对的概率为 0.3 3.试卷中有一道选择题,共有4个答案可供选择,其中只有一个答案是正确的。任一考生如果会解这道题,则一定能选出正确答案;如果他不会解这道题,则不妨任选一个答案。若考生会解这道题的概率是0.8,则考生选出正确答案的概率为 0.85 三、简答题1.玻璃杯成箱出售,每箱20只.假设各箱含0,1,2只残次品的概率分别为0.8, 0.1和0.1. 一顾客欲购一箱玻璃杯,在购买时,售货员任取一箱,而顾客随机的察看4只,若无残次品,则买下该箱玻璃杯,否则退还.试求顾客买下该箱的概率。解:设“每箱有只次品” ( , “买下该箱” . 2.一工厂有两个车间,某天一车间生产产品100件,其中15件次品;二车间生产产品50件,其中有10件次品,把产品堆放一起(两车间产品没有区分标志),求:(1)从该天生产的产品中随机取一件检查,它是次品的概率;(2)若已查出该产品是次品,则它是二车间生产的概率。解:(1)设事件“取的产品来自1车间”为,事件“取的产品来自2车间”为,“从中任取一个是次品”为,(2) 3发报台分别以概率0.6及概率0.4发出信号“”及“-”。由于通信系统受到干扰,当发出信号“”时,收报台以概率0.8及0.2收到信号“”及“-”;又当发出信号“-”时,收报台以概率0.9及0.1收到信号“-”及“”。求:(1)当收报台收到信号“”时,发报台确系发出信号“”的概率; (2)当收报台收到信号“-”时,发报台确系发出信号“-”的概率。解:设事件表示发报台发出信号“”,则事件表示发报台发出信号“-”; 设事件表示收报台收到信号“”,则事件表示收报台收到信号“-”; 根据题设条件可知:; ; 应用贝叶斯公式得所求概率为: (1) =0.923 (2) =0.75第八节 随机事件的独立性一、选择1.设=0.8,=0.7,=0.8,则下列结论正确的是( C )(A) 事件与互不相容 (B) (C) 事件与互相独立 (D) 2.设是两个相互独立的随机事件,,则( B )(A) (B) (C) (D) 二、填空1.设与为两相互独立的事件,=0.6,=0.4,则=2.加工某一零件共需经过三道工序。设第一、第二、第三道工序的次品率分别是2%、3%、5%。假定各道工序是互不影响的,则加工出来的零件的次品率是 0.09693 三、简答题1.一个工人看管三台车床,在一小时内车床不需要工人看管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7。求在一小时内三台车床中最多有一台需要工人看管的概率。解:设事件表示第台车床不需要照管,事件表示第台车床需要照管,(=1,2,3), 根据题设条件可知: 设所求事件为,则 根据事件的独立性和互不相容事件的关系,得到: =0.9022.如下图所示,设构成系统的每个电子元件的可靠性都是p(0p1),并且各个元件能否正常工作是相互独立的,求系统(1)和(2)的可靠性。 (1) (2)解:(1);(2)第九节 独立试验序列一、选择1.每次试验成功率为,进行重复试验,直到第10次试验才取得4次成功的概率为( B )(A) (B) (C) (D)二、填空1.某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为 0.5 2.设在三次独立试验中,事件出现的概率相等.若已知事件至少出现一次的概率等于 ,则事件在一次试验中出现的概率为 三、简答题1.射击运动中,一次射击最多能得10环。设某运动员在一次射击中得10环的概率为0.4,得9环的概率为0.3,得8环的概率为0.2,求该运动员在五次独立的射击中得到不少于48环的概率。解:设事件表示5次射击不少于48环,事件表示5次射击每次均中10环,事件 表示5次射击一次中9环,4次中10环,事件表示5次射击2次中9环,3次中10环,事件表示5次射击一次中8环,4次中10环,并且两两互不相容,由于每次射击是相互独立的,则所求概率 第二章 随机变量及其分布 第二节 离散随机变量一、 选择1 设离散随机变量的分布律为: 二、填空1 进行重复独立试验,设每次试验成功的概率为, 失败的概率为, 将试验进行到出现一次成功为止, 以表示所需试验次数, 则的分布律是_ _ _.(此时称服从参数为的几何分布).解:的可能取值为1,2,3 ,所以的分布律为三、计算题1 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以表示取出的3个球中的最大号码, 试求的概率分布. X 3 4 5 P P 第三节 超几何分布 二项分布 泊松分布一、 选择1 设随机变量, _. 解: C 二、填空 1设离散随机变量服从泊松分布,并且已知 .三、计算题1.某地区一个月内发生交通事故的次数服从参数为的泊松分布,即,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍.(1) 求1个月内发生8次、10次交通事故的概率;(2)求1个月内至少发生1次交通事故的概率;(3)求1个月内至少发生2次交通事故的概率;第五节 随机变量的分布函数一、 填空题1设离散随机变量 则的分布函数为 .二、选择1 设与分别为随机变量与的分布函数,为使是某一变量的分布函数,在下列给定的数值中应取2. 设 当(*)取下列何值时,是随机变量的分布函数.(A) 0 (B) 0.5 (C) 1.0 (D)1.5 解: A只有A使满足作为随机变量分布函数的三个条件.三计算题1 设随机变量的分布函数为,求的值.解:由随机变量分布函数的性质 知 解 得第六节 连续随机变量的概率密度一、选择1.下列函数中,可为随机变量的密度函数的是( B ) (A) (B)(C) (D) 二、填空1.设连续随机变量的分布函数为(1) 0.5 , (2)概率密度 三、计算题 1. 设随机变量的概率密度 求:(1)常数;(2)概率;答案 (1);(2); 2.已知随机变量的概率密度,求:分布函数。答案 第七节 均匀分布、指数分布二、 选择1.在区间上服从均匀分布的随机变量的密度函数是( B )(A) (B) (C) (D)2.服从参数为的指数分布的随机变量的密度函数是( C ) (A) (B) (C) (D)二、填空1.设随机变量在在区间上服从均匀分布,则(1) 0 , (2) , 1 , (4) ,三、计算 题1.某仪器有三只独立工作的同型号电子元件,其寿命(单位:)都服从同一指数分布,概率密度为试求:在仪器使用的最初的内至少有一只电子元件损害的概率。答案 第八节 随机变量函数的分布三、 选择1.设随机变量的概率密度为则随机变量的概率密度为( D ) (A) (B) (C) (D) (C) (D) 二、计算题1.设随机变量服从二项分布,求的概率分布: Y026p0.6480.2880.0642.设随机变量的概率密度求的概率密度答案第九节 二维随机变量的联合分布一、 选择题 设二维随机变量的联合概率密度为 则 ( A )(A)0.5 (B)0.55 (C) 0.45 (D)0.6二、填空1. 下表列出了二维随机变量联合分布律及关于和关于的边缘分布律中的部分数值,试将其余值填入表中的空白处 12.设二维随机变量的联合分布函数为则系数=,=,=, 的联合概率密度为 。三、计算题。1、设二维随机变量的联合概率密度为试求(1)常数 ; (2) 概率.解:(1)由于, 故,所以 (2)第十节 二维随机变量的边缘分布一、计算题 设二维随机变量的联合概率密度为,求的边缘概率密度。解 故2. 已知二维随机变量的联合概率密度为求随机变量和的边缘概率密度。解 , 。第十一节 随机变量的独立性一、计算题1. 已知随机变量和的概率分布而且问和是否独立?为什么? 解:因为所以和不独立。2. 已知二维随机变量的联合概率密度为随机变量和是否独立?解 由于 , 。故所以随机变量和独立。第十二节 二维随机变量函数的分布一、 填空题1.设和为两个随机变量,且则 P(max(X,Y)0)=P(X0或Y0)= P(X0)+P(Y0)-P(X0,Y0)=4/7+4/7-3/7=5/72. 设相互独立的两个随机变量和具有同一分布律,且的分布律为,则随机变量的分布律为 z=max0,0=0,p=0.25z=max0,1=max1,0=max1,1=1,p=0.75因为z是x,y中最大的那个当x=0,y=0时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论