三次方程和四次方程求根公式.doc_第1页
三次方程和四次方程求根公式.doc_第2页
三次方程和四次方程求根公式.doc_第3页
三次方程和四次方程求根公式.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三次方程求根公式 设一元三次方程在复数集中的根是x1,x2,x3,那么 其中 早在古巴伦的文献中,已有一些三次、四次的数字方程。7世纪初期,我国唐朝的数学家土孝通所著的缉古算经一书记载了不少三次方程。阿拉伯人也很早就研究过三次方程。但是在上千年的漫长岁月里,人们寻求一般三次方程的求根公式没有进展。直到1494年,意大利数学家帕克里还宣称一般的三次方程是不可能解的。 1500年波伦亚的数学教授菲洛终于找到了形如 的三次方程的一般解法。但他向外保密,只是秘传给他的一个学生。在菲洛死后近十年,这个学生以上述三次方程求解问题向当时意大利数学家塔塔里亚挑战。塔塔里亚也找到了方程(1)的一般解法,并公开了结果。但他也不肯公布推导过程。这件事为数学物理教授卡丹所知,便要塔塔里亚把解题的秘诀告诉他,塔塔里亚在卡丹发誓绝对保密的情况下,将证明方法告诉卡丹。卡丹不顾他的誓言,把这个解法发表在他的重要的艺术一书中,为此塔塔里亚向卡丹提出责难,引起双方一场论战。三次方程求根公式现在仍称为卡丹公式。塔塔里亚与卡丹的解法如下: 作变换 ,使方程(1)化成 令 ,得 解这个二次方程,得出z后,就可得到y的六个值,然后再利用关系式 就可得到x的值。 根据卡丹公式,我们就能解一般的三次方程: 首先把它改写为 令就可化成缺平方项的三次方程 这里费拉里与一元四次方程的解法卡当在重要的艺术一书中公布了塔塔利亚发现的一元三次方程求根公式之后,塔塔利亚谴责卡当背信弃义,提出要与卡当进行辩论与比赛。这场辩论与比赛在米兰市的教堂进行,代表卡当出场的是卡当的学生费拉里。费拉里(Ferrari L.,15221565)出身贫苦,少年时代曾作为卡当的仆人。卡当的数学研究引起了他对数学的热爱,当其数学才能被卡当发现后,卡当就收他作了学生。费拉里代替卡当与塔塔利亚辩论并比赛时,风华正茂,他不仅掌握了一元三次方程的解法,而且掌握了一元四次方程的解法,因而在辩论与比赛中取得了胜利,并由此当上了波伦亚大学的数学教授。一元四次方程的求解方法,是受一元三次方程求解方法的启发而得到的。一元三次方程是在进行了巧妙的换元之后,把问题归结成了一元二次方程从而得解的。于是,如果能够巧妙地把一元四次方程转化为一元三次方程或一元二次方程,就可以利用已知的公式求解了。费拉里的方法是这样的:方程两边同时除以最高次项的系数可得(1)移项可得(2)两边同时加上 ,可将(2)式左边配成完全平方,方程成为(3) 在(3)式两边同时加上 可得(4)(4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即(5)这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论