概率统计答案(更新至第五章).pdf_第1页
概率统计答案(更新至第五章).pdf_第2页
概率统计答案(更新至第五章).pdf_第3页
概率统计答案(更新至第五章).pdf_第4页
概率统计答案(更新至第五章).pdf_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Solutions for Homework Huaming King 2012 12 23 King If I mean such probability exists some of the HW appear in the fi nal test are you sure you are capable of solving them 1 2 3 If F x Rx Ce t dt x is a distribution function what should C be 1 Solution Since F x is a distribution function then Z Ce t dt 2C Z 0 Ce tdt 2C 1 which implying that C 1 2 4 Suppose that random variable X has the following distribution function F x 0 x 5 1 5 5 x 2 3 10 2 x 0 1 2 0 x 2 1x 2 Find the probability distribution of X Solution It is easy to see that F x is a purely jumping function Therefore X is a discrete type random variable Since P X x F x F x one follows that P x 5 1 5 0 1 5 P x 2 3 10 1 5 1 10 P x 0 1 2 3 10 2 10 P x 2 1 1 2 1 2 We come to conclusion that the probability density matrix of X is 5 202 2 10 1 10 2 10 5 10 5 4 4 3 Solution 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 n P n 3 P n 4 P n 5 P n 6 P n 7 1 P n 3 2 8 3 A3 8 n 3 1 2 3 4 3 A3 4 P n 3 A3 4 A3 8 4 3 3 8 7 6 1 14 2 P n 4 8 4 A4 8 n 4 C1 3 A4 8 A1 4A13A14A12 A1 4A13A14A12 P n 4 3A1 4A13A14A12 A4 8 3 4 3 4 2 8 7 6 5 6 35 3 P n 5 8 5 A5 8 n 5 C2 4 6 A5 8 A1 4A13A14A13A12 A1 4A13A14A13A12 3 P n 5 6A1 4A13A14A13A12 A5 8 6 4 3 4 3 2 8 7 6 5 4 9 35 4 P n 6 2 7 5 P n 7 3 14 34567 1 14 6 35 9 35 2 7 3 14 7 Suppose that random variable X has distribution P X k C 2 3 k k 0 1 2 3 Find 1 the value of C 2 P 1 X 2 3 P 0 X 2 5 Solution 1 One knows that 4 X k 0 C 2 3 k C 1 2 3 4 9 8 27 1 implying that C 27 65 So P X k 27 65 2 3 k 2 P 1 X 2 P X 1 P X 2 27 65 2 3 2 3 2 6 13 3 P 0 X 0 0y 0 Proof Let Fy x be the distribution function of Y Then Fy x P Y x P X x P X x2 Z x2 0 p t dt let t y2 Z x 0 2yp y2 dy 1 Then we conclude that Y is a continuous random variable with density function py y 2yp y2 y 0 22 Suppose X p and P X 1 2P X 2 Find EX DX and P X 3 Solution Since X is a Poisson random variable we suppose that P X k k k e Then one follows that P X 1 1 1 e 2 2 2 e 2P X 2 Solving this equation one has that 1 Therefore P X k 1 k e 1 Then EX DX 1 and P X 3 1 3 e 1 1 6e 27 Suppose that X N 5 4 Find 3 P 1 X 9 Solution One knows 5 and 2 Then it follows that X 5 2 N 0 1 7 Therefore we have P 1 X 9 P 1 5 2 X 5 2 9 5 2 P 2 X 5 2 2 2 2 2 2 1 28 Suppose that X U 0 5 Find the probability that the equation 4x2 4Xx X 2 0 has real solution Solution The equation 4x2 4Xx X 2 0 has real solutions if and only if 4X 2 4 4 X 2 16X2 16X 32 0 Equivalently one has X 2 X 1 0 which implies that X 1 X 2 Since X U 0 5 P X 1 0 Then one conclude that P equation has real solution P X 2 5 2 5 0 3 5 30 Suppose that random variable X has density function p x 1 1 x2 x 0 y 0 1 k 2 F x y 3 P 0 X 1 0 Y 0 y 0 2 F x y Z x 0 Z y 0 p s t dsdt Z x 0 Z y 0 12e 3s 4tdsdt Z x 0 3e 3sds Z y 0 3e 3tdt 1 e 3x 1 e 3y 3 P 0 X 1 0 Y 2 F 1 2 F 0 2 F 1 0 F 0 0 11 1 e 3 1 e 8 0 1 e 8 0 1 e 3 0 F 1 2 1 e 3 1 e 8 4 X Y p x y 1 2 0 x 1 0 y 2 X Y 1 2 Solution X Y 1 2 min X Y 1 2 P X Y 1 2 P min X Y 1 P Y X 4 P Y 1 2 X 1 2 Solution 1 X p1 x Z 2 0 p x y dy Z 2 0 x2 1 3xydy 2x2 2 3x 0 x 1 Y p2 y Z 1 0 p x y dx Z 1 0 x2 1 3xydx 1 3 1 6y 0 y 2 2 X Y y pX Y x y p x y p2 y x2 1 3xy 1 3 1 6y 0 x 1 0 y 2 14 Y X x pY X y x p x y p1 x x2 1 3xy 2x2 2 3x 0 x 1 0 1 ZZ x y x y 1 p x y dxdy Z 1 0 Z 2 1 x x2 1 3xydy dx Z 1 0 x2 1 x 1 3x 2 1 x 2 2 dx 65 72 P Y X ZZ x y y x p x y dxdy Z 1 0 Z 2 x x2 1 3xydy dx Z 1 0 x2 2 x 1 3x 2 x2 2 dx 17 24 4 P Y 1 2 X 1 2 P Y 1 2 X 1 2 P X 1 2 R1 2 0 R1 2 0 p x y dxdy R1 2 0 p1 x dx R1 2 0 R1 2 0 x2 1 3xydxdy R1 2 0 2x2 2 3xdx R1 2 0 1 2x 2 1 24xdx R1 2 0 2x2 2 3xdx 5 32 13 X Y p x y e y 0 x 0 p2 y Z y 0 e ydx ye y y 0 15 p x y e y6 ye x y p1 x p2 y X Y 2 X Y y pX Y x y p x y p2 y e y ye y 0 x y Y X x pY X y x p x y p1 x e y e x 0 x y 14 X 13 0 30 7 Y 24 0 60 4 X Y X Y Solution X Y P X Y 3 P X 1 Y 2 P X 1 P Y 2 0 3 0 6 0 18 P X Y 5 P X 1 Y 4 P X 3 Y 2 P X 1 P Y 4 P X 3 P Y 2 0 3 0 4 0 7 0 6 0 54 P X Y 7 P X 3 Y 4 P X 3 P Y 4 0 7 0 4 0 28 X Y X Y 357 0 180 540 28 15 X U 0 1 Y e 1 X Y Z X Y Solution p1 x 1 0 x 1 p2 y e y y 0 z 1 pX Y z Z 1 0 p1 x p2 z x dx Z 1 0 p1 x p2 z x dx Z 1 0 e z x dx 16 e z Z 1 0 ex dx e z e 1 pX Y z 0z 1 z 0 1 x y z 0 x 1 x 0 1 x z 16 X Y p x y e x y x 0 y 0 1 2 X Y Solution 1 2 X Y FZ z FZ z P 1 2 X Y z P X Y 2z ZZ x y x y 2z p x y dxdy Z 2z 0 Z 2z x 0 e x y dydx Z 2z 0 e x e 2zdx 1 e 2z 2ze 2z 1 2 X Y pZ z F Z z 2e 2z 2e 2z 4ze 2z 4ze 2z z 0 17 X Y G p Z max X Y solution P X n P Y n qn 1p P Z n P max X Y n P X n Y n P X n P Y n P X n 2 n X k 1 qn 1p 2 p 1 q qn 1 2 p2 1 qn 2 1 q 2 1 qn 2 P Z n P Z n P Z n 1 1 qn 2 1 qn 1 2 I feel very tired and have to stop here You must do all the homework left by yourself 17 4 1 Xn p x 1 x 3 x 1 0 X 1 Xn Z x p x dx Z x 1 x 1 x 3 dx Z x 1 1 x 2 dx 2 Z 1 1 x2 dx 0 lim n P Pn i 1Xi n 0 2 200 0 6 1kw 0 999 Solution i 1 2 200 Xi 1 i 0 i Xi P Xi 1 0 6 P X 0 0 4 E Xi 0 6 D Xi 0 6 0 4 0 24 200 P200 i 1Xi 1kw 200 x P 200 x 0 999 P 200 x P 200 200 0 6 200 0 6 0 4 x 200 0 6 200 0 6 0 4 x 200 0 6 200 0 6 0 4 0 999 18 x 200 0 6 200 0 6 0 4 3 1 x 141 5 141 5 0 999 3 U 0 5 0 5 1 300 15 2 n 10 0 9 n Solution i Xi Xi U 0 5 0 5 E Xi 0 D Xi 0 5 0 5 2 12 1 12 P Pn i 1Xi n 0 pn 12 x x 1 P 300 X i 1 Xi 15 P 15 300 X i 1 Xi 15 P 15 p300 12 P300 i 1Xi p300 12 15 p300 12 15 p300 12 15 p300 12 2 3 1 2 0 99865 1 0 9973 2 P P300 i 1Xi 10 0 9 P n X i 1 Xi 10 P 10 n X i 1 Xi 10 P 10 pn 12 Pn i 1Xi pn 12 10 pn 12 10 pn 12 10 pn 12 2 10 pn 12 1 0 9 19 10 pn 12 0 95 10 pn 12 1 64 n 440 4 0 01 0 95 100 Solution n Xi 1 i 0 i Xi P Xi 1 0 99 P Xi 0 0 01 E Xi 0 99 DXi 0 99 0 01 n Pn i 1Xi n P n 100 0 95 P n 100 1 P n 100 1 P n n 0 99 n 0 99 0 01 0 8 P n 0 8n 1 P n 0 8n 1 P n n 0 9 n 0 09 0 8n 0 9n 0 09n 1 0 8n 0 9n 0 09n 0 9n 0 8n 0 09n n 3 0 95 n 3 1 65 n 25 6 X P 100 P 80 X 100 Solution Poisson i i 1 2 100 P 1 100 X i 1 i P 100 E i 1 D i P P100 i 1 i 100 100 x x P 80 X 100 P 80 100 X i 1 i 100 P 80 100 100 P100 i 1 i 100 100 100 100 100 100 100 100 80 100 100 0 2 0 5 1 2 0 5 0 9773 0 4773 7 lim n n X k 0 nk k e n 1 2 Proof i i 1 2 P 1 n X k 1 k P n E n X k 1 k n D n X k 1 k 21 lim n P Pn k 1 k n n x x x 0 lim n P Pn k 1 k n n 0 0 1 2 lim n P n X k 1 k n 1 2 lim n n X k 0 nk k e n 1 2 5 2 2 4 X 100 Chebyshev X 90 Solution D X D X n 2 100 4 100 Chebyshev P X DX 2 4 100 2 P X 1 4 100 2 0 4 P X 0 4 1 4 100 0 42 0 9 P 0 4 X 0 4 0 9 4 m n F 1 F1 m n 1 F n m 22 Solution m n X Y X 2 m Y 2 n X m Y n F m n F m n X m Y n F m n 1 Y n X m F n m 1 n m F F m n P F1 m n 1 P 1 1 F1 m n 1 2 1 F n m P 1 F n m P 1 F n m 1 3 2 3 P 1 1 F1 m n P 1 F n m 1 F n m 1 F1 m n 5 N 40 52 1 36 X 38 43 2 64 X 40 1 3 n P X 40 1 0 95 Solution E X 40 D X 2 n 52 n 1 P 38 X 43 P 38 40 q 25 36 X 40 q 25 36 43 40 q 25 36 23 P 2 4 X 40

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论