




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章讨论题及其参考解答1.4人坐在橡皮艇里,艇浸入水中一定深度。到夜晚温度降低了,但大气压强不变,问艇浸入水中深度将怎样变化。答:由于橡皮的弹性使艇的线度可变,从而维持橡皮艇内气体的压强始终和大气压强相等。由知,在不变时与成正比,故夜晚时由于温度降低而减小。艇水平截面积缩小,而浮力不变,故吃水深度增加。1.5氢气球可因球外压强变化而使球的体积作相应改变。随着气球不断升高,大气压强不断减少,氢气不断膨胀。如果忽略大气温度及空气平均分子质量随高度的变化,试问气球在上升过程中所受浮力是否变化?说明理由。答:由于不管氢气球处于什么高度,球内氢气的压强恒等于球外空气压强,氢气球体积恒等于排开空气体积,而气球上升过程中球内外温度始终相同并且不随高度而变化,所以气球所排开空气的状态参量和氢气的状态参量完全相同。考虑到理想气体方程和气体种类无关,所以排开空气的物质的量恒等于氢气的物质的量。而氢气的物质的量是不变的,所以排开空气的物质的量也不变,故气球受到浮力不随高度而变。下面进一步做定量分析。设气球在地面处的压强为,体积为V0,在高度h处的压强和体积分别为、Vh。高度h处空气的密度为。气球在高度h处浮力等于排开同体积空气的重量,而其中为高度h处的空气摩尔质量,为高度h处的大气温度。由这两式可以得到(1)这里已利用了理想气体方程,其中为高度h处气球排开空气的物质的量。设气球在地面时大气的温度、压强、气球体积、空气密度及空气摩尔质量分别为、。则这时气球的浮力(2)正如前面分析的,气球排开空气的质量和氢气的质量始终相等。(3)根据题设条件有(4)由(1)式、(2)式、(3)式(4)式可知,即气球受到浮力不随高度而变。1.9系统A和B原来都处在平衡态,现使它们互相接触,试问在下列情况下,两系统接触部分是绝热的还是透热的,或两者都可能?(1)当VA保持不变,pA增大时,VB和pB都不发生变化;(2)当VA保持不变, pA增大时,pB不变而VB增大;(3)当VA减少、pA增大时,VB和pB均不变。答:(1)是绝热的。因为pAVA增大,所以A的温度增加。但它并不使B状态发生变化,说明既没有热量传递也没有做功。(2)是透热的。因为pAVA增大,所以A的温度增加。从B来说,VB增加了,说明B膨胀对外做了功,其能量只能来源于从A吸热。(3)因为VB和pB均不变,说明B的温度不变。但是VA减少、同时pA增大,这两者的乘积可变可不变,所以A的温度也可变可不变。若A的温度改变则是绝热的;若A的温度不变,则A、B相互按触的部分可能绝热,也可能透热。在透热壁的情况下,A被等温压缩。1.19一辆高速运动卡车突然刹车停下,试问卡车上的氧气瓶静止下来后,瓶中氧气的压强和温度将如何变化?答:高速运动的氧气瓶中的分子是在杂乱无章运动的基础上附加上x方向定向运动速度。氧气瓶静止下来后,气体分子与氧气瓶发生碰撞,高速的x方向定向运动动能通过分子之间的频繁碰撞逐步平均分配到y、z方向的自由度以及其他自由度上去。达到平衡态时,能量达到均分,温度上升,压强升高。1.20加速器中粒子的温度是否随粒子速度增加而升高?答:分子(或粒子)系统的温度是处于平衡态的群体的杂乱无章运动的平均动能大小的度量。加速器只能加速粒子的定向运动动能,不能增加热运动动能,所以在加速过程中粒子的温度是不变的。1.27试用势能曲线说明固体分子都在平衡位置附近作微小振动。试问固体分子总能量是正的还是负的?如何利用势能曲线解释固体热膨胀现象。答:对固体的热膨胀现象可作如下解释。组成晶体的微观粒子都在振动,宏观上看到的固体的线度是由相邻两微观粒子振动的平衡位置之间距离决定的。现用势能曲线来说明微观粒子如何作振动的。图中O点为势能曲线的最低点,它处于位置,而就是两粒子恰正相互接触时两质心之间的距离。也就是在绝对零度时相邻两粒子的平均距离(因为在绝对零度时的动能可以认为是零)。设在时的势能为Ep0。现考虑某微观粒子。它具有动能和势能,其总能量,则该粒子的能量变化情况将由图中横轴下面的一条虚线(实际上这就是总能量水平线)表示。由图可见,在()时,动能为零。它受到方向向右斥力而反向运动,动能将逐步增加,势能逐步减少。当运动到时,斥力为零,动能最大。惯性使它继续向右运动。它受到的力改为方向向左吸引力,动能减小,势能增加。在时动能又变为零,在吸引力作用下粒子向左运动。振动如此产生。由于势能曲线的势能谷(称为势阱)的非对称性,其平衡位置不在处而在处,所以它不是简谐振动。当固体温度从绝对零度逐步升高时,总能量逐步增加,表示总能量高低的图中虚线逐步向上移。由于势能曲线在同一水平线上的两点中,表示吸引力的那一点的曲线倾斜程度总是比表示排斥力的那一点的倾斜程度小,因而随温度增加而增加。在图上由稍向右倾钭的曲线OO表示。这在宏观上反映为固体的线度增加,因而发生热膨胀。第二章讨论题及其参考解答2.1速率分布函数的物理意义是什么?试说明下列各量的意义。(1);(2);(3)。答:(1)表示分子速率介于到间的概率。(2)表示速率介于v到间分子的速率之和。这是因为表示速率介于到的分子数。这些分子的速率可认为都是。故所有其速率介于到间分子的速率之和就是。(3)表示其速率从v1到v2间所有分子的速率之和.2.2试问速率v1到v2之间分子的平均速率是否是?若是,其原因是什么?若不是,则正确答案是什么?答:不是。因为介于某一速率范围内的分子的平均速率应是所有介于这一范围内分子的速率之和再除以该范围内的总分子数。显然,速率从v1到v2范围内分子的速率之和为。速率从v1到v2范围内的总分子数是。故速率从v1到v2之间的所有分子的平均速率是2.4恒温器中放有氢气瓶,现将氧气通入瓶内,某些速度大的氢分子具备与氧分子化合的条件(如只有当速率大于某数值的两个氢分子和一个氧分子碰撞后才能复合为水),同时放出热量。问瓶内剩余的氢分子的速率分布改变吗?(一种观点认为,因为氢气分子中速率大的分子减少了,所以分子的速率分布应该向温度低的方向变化;另一种观点认为,因为这是放热反应,气体温度应该升高,速率分布应该向温度高的方向变化,您认为如何?)。若氢气瓶为绝热容器,情况又如何?答:在气体化学反应进行过程中,平衡态尚未达到时是谈不上什么速率分布的。平衡态建立以后,混合气体中氢分子和氧分子的速率分布决定于它们自己的温度。若容器为恒温器,则速率分布不变。若为绝热容器,由于是放热反应,故温度要升高,速率分布向温度高的方向改变。2.5图所示为麦克斯韦速率分布曲线,在下图中A、B两部分面积相等,试说明图中的意义。试问是否就是平均速率?答:图中仅是概率分布曲线中的分界线。它仅表示速率0到间的概率与从到间的概率相等。与平均速率间无任何关系。2.8设某假想的分子速率分布曲线如图所示,试在横坐标轴上大致标出最概然速率、平均速率和均方根速率的位置。在何处,是否?与何者大?答:最概然速率就是图中曲线的峰值所对应的速率。但是由于该速率分布不是麦克斯韦速率分布,故其平均速率不一定比最概然速率大(当然麦克斯韦速率分布中的平均速率一定比最概然速率大)。我们有理由估计到,对于本题图所表示的速率分布曲线,很可能其平均速率反而比最概然速率小,其理由如下:我们知道,平均速率等于所有分子的速率之和被除以总分子数。若速率只能取分立数值,则其中为速率取的概率。若速率取连续值,则平均速率等于任一速率微分范围内的概率与该速率乘积的迭加(即积分),它可表示为在麦克斯韦速率分布中区段的曲线下面积(即概率),要小于区段的曲线下面积。这说明在求麦克斯韦速率分布的平均速率时,从取平均时不同速率所占的杈重(即概率)的大小这一点来分析,则区段比区段的贡献要大(我们把这称为正作用,反之称为负作用)。另一方面,从求分子的速率之和这一点来看,速率大的分子要比速率小的分子贡献大些。也就是说,在求任一速率分布的平均速率时,速率相对大一些的区段要比速率相对小一些的区段的贡献大些(这也是正作用)。这两种正作用因素共同影响的结果,使麦克斯韦速率分布的平均速率比最概然速率大些。但是对于上图的分布曲线来说,区段的曲线下面积要明显小于区段曲线下面积(我们把这一点称谓一种比较强的负作用)。则它的平均速率就不一定大于最概然速率,而且很可能小于最概然速率。这是因为在麦克斯韦速率分布中,仅比高出12.8%。只要上面提到的负作用足够强,它能抵消甚至超过速率大的分子对速率之和的贡献要大些这种正作用,则平均速率很可能小于最概然速率,甚至均方根速率也可能小于最概然速率。显然,若图中分布曲线中的水平部分足够长,则均方根速率必然会小于最概然速率。至于与的大小比较,可如下得到:随机变量v会偏离平均值,即。一般其偏离值的平均值为零(即),但均方偏差0,所以即说明:我们遇到的实际问题常常是与多种因素相关联而比较复杂,常常无法作定量计算而只能定性分析。由此得到的结论可能只是一些判断或某种估计、估算。正因为它不严密,因而不可能100%准确。但是进行这种判断或估计、估算能力的培养却是十分重要的,因为它对于解决实际问题非常有帮助。2.11表示什么?表示什么?N表示什么?又表示什么?如何求得在速度空间中代表点的数密度?什么是分子速率分布的概率密度?试利用速度空间形象化地予以说明。答:表示其速度的三个分量在,而范围内的概率。也表示在速度空间中截面积为,其棱平行于轴的无穷长柱体中的代表点数与总代表点数之比。表示三个速度分量在,范围内的概率。它也表示体积为的微小立方体位于速度空间中任何一处时,其中的代表点数与总代表点数之比。因为表示体积为的微小立方体中的代表点数。而是微小立方体的体积,所以是速度空间中代表点的数密度。既然表示速度分量在,范围内的概率,它也是在速度空间中位于任意位置的体积为的微小立方体中的概率。由于概率被除以速度空间中微分元体积就是概率密度,所以是速度空间中任何位置处的概率密度。2.12何谓速度空间?速度空间中的一个点代表什么?速度空间中的个微分体积元代表什么?答:速度空间是以,作为直角坐标系三个坐标轴来描述的空间,是一种假想的空间,利用它可以描述粒子的速度大小和方向。从速度空间的原点向速度空间中的某一点画出一个矢量,该矢量的大小和方向就是所对应的速度矢量。速度空间中的微分元表示速度矢量的取值范围在,内的所有那些速度矢量的整体,而,是该立方体微分元中最靠近原点的那一点的坐标。2.13既然最概然速度出现在速度矢量为零处,这不就说明气体中速率很小的分子占很大比例吗?这与麦克斯韦速率分布中所指出的气体分子的速率很大与很小的分子都很少的说法是否矛盾。如何理解最概然速度?它与最概然速率有何不同?答:必须严格地区分速度与速率。同样也必须严格区分最概然速度和最概然速率这两个完全不同的概念。最概然速率是速率分布概率密度函数取最大值时的速率。也就是在任一速率附近取的速率范围时所得到的概率(它就是在速率分布曲线下面,其宽度同为的窄条的面积)为最大的速率。同样也应该按照这样的精神来定义最概然速度。由于气体分子处于速度空间中任何一点附近范围内的概率就是速度分布,则速度分布中概率取极大时的速度就是最概然速度。麦克斯韦速度分布公式可表示为由于只有在指数上为零时其概率密度才为极大,而,所以最概然速度就是速率处的速度。或者说是速度矢量等于零处的速度。我们也可以在速度空间中来理解最概然速度和最概然速率,这样更为清楚直观。我们知道若把体积为的小立方体放到速度空间任一位置时,在小立方体中的代表点数与总分子数之比这就是速度分布。最概然速度应该是把体积为的小立方体放到速度空间中这一位置时其概率为最大时的速度。对于麦克斯韦速度分布,在速度空间的原点处其代表点最为密集,因而把该小立方体放到原点时其概率最大,所以最概然速度出现在速度矢量为零处。同样在速度空间中作一个个厚度均为的同心球壳,则在球壳中的代表点数与总分子数之比就是速率分布。最概然速率是指速度空间中以原点为中心,半径为的一个个同心球壳中,其代表点数最多的球壳所对应的速率。球壳的代表点数既与球壳体积有关,又与代表点的数密度有关。速率大时也大,另一方面,麦克斯韦速度分布函数(它也相当于速度空间中代表点的数密度)是从原点开始按照指数衰减的。这两种因素共同作用的结果,使得半径为的同心球壳中代表点数既不在原点处也不在速率很大处,而是在处最多,因而最概然速率。2.20若定义在验证麦克斯韦速率分布实验中的分子束强度为单位时间内穿过准直狭缝的分子数。试问下列情况下分子束强度如何变化?(1)加热炉小孔面积扩大四倍;(2)加热炉中温度不变,其压强增加四倍;(3)加热炉温度、压强均不变,但使用一种分子质量四倍于原来分子质量的气体。答:分子束仅不过是从小孔中泻流出来的一部分分子,所以它的速率分布情况是与气体分子碰壁的速率分布情况一样的。由于可见:(1)加热炉小孔面积扩大四倍时,其分子束强度也扩大四倍;(2)加热炉中温度不变,其压强增加四倍时,其分子束强度也扩大四倍;(3)加热炉温度、压强均不变,但使用一种分子质量四倍于原来分子质量的气体时,其分子束强度减小为原来的一半。2.24试确定下列物体的自由度数:(1)小球沿长度一定的直杆运动,杆又以定速度在平面内作定轴转动。(2)长度不变的棒在平面内既平动又滚动。答:(1)这里没有交代小球的线度和直杆的“半径”分别是怎样的,也没有交代直杆的柱面是怎样形状的(是圆的、方的、还是任意形状的)。 若小球可看作质点,而杆的“半径”很小可予忽略,则小球在直杆上运动有一个自由度,直杆在平面内作定轴转动又有一个转动自由度,这样小球共有2个自由度。 若小球可看作质点,而杆的形状是圆柱形的,其半径不可忽略,则小球在直杆上运动有2个自由度,另外直杆在平面内作定轴转动又有一个自由度,这样小球共有3个自由度。 若小球可看作质点,杆的形状不是圆柱形而是方柱形,甚至是任意形状的柱面,并且其横截面的大小不可忽略,则小球在直杆上运动仍然只有2个自由度。这是因为一个质点在三维空间中应该有三个自由度,如果它被约束在某一曲面上运动,就会附加上一个曲面方程。多一个方程就减少一个独立变量,所以仍然只有2个自由度。可以估计到,若此杆不是直的,而是任意弯曲的,只要其形状不改变,则质点在该柱面上运动也是只有2个自由度。 若小球不能看作质点,还应在上述各种情况中附加上小球绕它自己的质心运动的转动自由度。若小球只能作定轴转动,则只有1个转动自由度,其自由度数是3个。(2)长度不变的直圆棒在平面内既平动又滚动可看为棒的中心轴在平面上的平动与棒绕自己的中心轴转动这两种运动的迭加。中心轴的平动有3个自由度(中心轴在平面上的平动可看为位于中心轴上的质心的平动与棒绕通过质心的竖直轴作定轴转动这两种运动的迭加。质心在平面上的平动有两个平动自由度,再加上一个作定轴转动的转动自由度,故中心轴的平动有3个自由度)。而棒绕它自己的轴转动又有1个转动自由度,所以其总自由度数是4个。2.25试确定小虫的自由度:(1)小虫在平面上爬,分两种情况讨论:小虫可看作质点;小虫不可看作质点。(2)小虫在一根直圆棒上爬,棒的直径比小虫大得多。也分两种情况讨论:小虫可看为质点及小虫不可看作质点。(3)小虫在一根弹簧表面上爬,弹簧丝的直径比小虫的线度大得多,小虫不可视作质点。分弹簧在振动与弹簧不在振动两种情况讨论。答:(1)小虫在平面上爬,若小虫可以被看作质点,它有2个平动自由度。若小虫不可看作质点,小虫还有一个作定轴转动的转动自由度,其自由度数为3个。(2)小虫在一根直圆棒上爬,棒的直径比小虫大得多。若小虫可看作质点,则小球在直杆上运动有2个自由度(沿柱面圆周运动有1个自由度,沿直杆纵轴上运动又有1个自由度)。若小虫不可看作质点,则还应该附加上小虫在圆柱面上作定轴转动的自由度,总共有3个自由度。(3)小虫在一根弹簧表面上爬,弹簧丝的直径比小虫的线度大得多,小虫不可看作质点。若弹簧不在振动,小虫在弹簧丝上爬与在直圆棒上爬的自由度数是相同的,都是2个平动自由度再加上1个转动自由度。若弹簧在振动,则还应该附加上弹簧振动而具有的振动自由度,其总的自由度数是4个。2.29微观上如何理解分子与分子及分子与器壁间的碰撞是非弹性的?并举出分子与分子及分子与器壁做非弹性碰撞的实例。答:从力学上理解,弹性与非弹性碰撞的主要区别是前者机械能守恒,后者机械能不守恒,因而在非弹性碰撞中会发生机械能与非机械能间的转换。在热学中如何理解弹性与非弹性碰撞呢?假如单纯考虑两刚性分子(所谓刚性分子是指不会发生形变的分子)之间的碰撞。这本身是个力学问题,因而必然是弹性碰撞。因为刚性分子只有平动动能和转动动能,它们都是机械能。我们可以把这种描述气体分子空间位置的平动自由度和转动自由度均称为分子的外部自由度。气体分子还具有内部自由度,例如构成分子内部的原子之间由于相对运动所具有的振动自由度;描述原子内部电子跃迁所具有的自由度;以及与原子核结构有关的自由度等,这些都称为内部自由度。由于内部自由度不表示分子作为一个整体的空间位置,所以它的能量不属于机械能的范畴。在分子之间发生碰撞时,若发生分子外部自由度与内部自由度能量之间的转换,则应该是非弹性碰撞。例如:(1)气体化学反应是由分子间碰撞而发生的,化学反应中的反应热的吸放是由于原子中电子壳层能量的改变而导致的,这是内部自由度能量的释放或吸收,所以在气体化学反应中分子间的碰撞是非弹性碰撞。(2)又如由于粒子之间的碰撞而致使光线的发射,这类现象也是非弹性碰撞。常见的例子如在日光灯管中发生的在电场中加速的电子去碰撞水银分子,使水银分子中的电子发生能级跃迁,因而发射出紫外光(以后,紫外光又照射到日光灯管的荧光粉上导致二次发光,其光谱覆盖了可见光范围,这样日光灯管就发出白光)。(3)再如在发生核反应或粒子反应时的粒子之间的碰撞等。以上这些都是非弹性碰撞的实例。同样,分子与器壁间的碰撞也有弹性与非弹性之分。例如若室内温度与室外温度不同时热量从室内传递到室外。这是先通过室内气体分子与器壁作非弹性碰撞,气体分子把能量从室内传递给器壁,然后室外气体分子与器壁又发生非弹性碰撞,器壁又把能量传递给室外气体。分子与器壁间的非弹性碰撞类似于作直线运动的某刚球与席梦思床垫中的弹簧发生的碰撞,刚球与席梦思中一个弹簧的碰撞将导致席梦思中所有弹簧都振动起来,这时刚球的一部分定向运动动能转换为席梦思中弹簧的整体的杂乱无章的动能(它相当于热运动动能)。在室内气体的温度高于器壁的温度时,平均说来气体分子在与器壁发生碰撞时总是将能量从气体分子传递给器壁,因而这种碰撞是非弹性碰撞。但是当气体的温度与器壁温度相同时,平均说来气体分子与器壁之间没有热运动能量的传递,因而它们之间的碰撞是弹性碰撞。又如真空喷镀,在玻璃上喷镀上一薄层金属。它是通过从真空加热炉中的金属蒸发出气体分子,这些气体分子去碰撞其温度远低于气体温度的玻璃。这时金属原子被粘附在玻璃表面上。显然金属原子与玻璃器壁之间的碰撞是完全非弹性碰撞。在上述例子中都可以看到,在气体分子与器壁发生非弹性碰撞时,同样发生气体分子的外部自由度的能量与器壁的内部自由度能量之间的转换。总之,在热学中判别弹性碰撞与非弹性碰撞的标准是看有否发生内部自由度能量与外部自由度能量之间的转换。2.30推导理想气体压强公式时,曾假设分子与器壁间的碰撞是完全弹性的。实际上器壁可以是非弹性的。只要器壁和气体的温度相同,弹性和非弹性的效果没有什么不同,为什么?答:从上题的解答中就可以知道,在气体分子与器壁作弹性碰撞时不会发生分子的外部自由度与器壁的内部自由度之间能量的转换,因而没有热量的传递。显然,它们的温度应该是相同的。而发生非弹性碰撞时,总是有气体分子与器壁间能量转换,也即有热量的传递,这只有在温度不相同时才能发生。所以即使器壁是非弹性的,只要器壁和气体温度相同,分子与器壁间的碰撞是弹性还是非弹性的,其效果没有什么不同。第四章热力学第一定律1判断下列说法是否正确?为什么?(1)只要系统与外界没有功、热量及粒子数交往,在任何过程中系统的内能和焓都是不变的;(2)在等压下搅拌绝热容器中的液体,使其温度上升,此时未从外界吸热,因而是等焓的;(3)若要计算系统从状态“1”变为状态“2”的热量可如此进行.答:(1)1对于体积可改变的、而又不存在化学反应的系统,在系统与外界没有功、热量及粒子数交往的情况下,在任何过程中系统的内能一定是不变的.根据热力学第一定律,内能的变化来自有功和热量,实际上这是针对封闭系统(简称闭系)而言的.若系统可以与外界交换粒子(或者粒子可以流进、流出系统),系统的粒子数发生改变(这样的系统称为开系).则在粒子流进、流出的同时也就带进、带出了能量,因而系统内能有也要发生变化.所以系统内能变化只可能来自功、热量及粒子数交往这三种形式.在这三种形式都不存在时内能一定不变,系统的状态也不变,因而作为状态函数的焓也不变.2若系统中存在化学反应或者核反应,则即使系统与外界没有功、热量及粒子数交往.系统的内能和焓都会改变.因为化学反应和核反应都会有反应热的吸、放,这是原子内部的能量的释放和吸收,所释放出的能量变为分子的热运动动能.我们知道内能函数与势能一样有一个常数,这一常数可有不同取法.通常内能取到分子层次,即内能表示分子的热运动动能和分子间的引力势能之和,则原子内部能量的释放就使分子热运动加剧,温度增加,内能增加.在体积不变的系统中,压强也要增加,因而焓也增加.(2)不对,这时的焓是改变的.因为焓,等压下搅拌绝热容器中的液体时,液体温度升高内能增加,而液体的和基本上不变,所以液体的焓增加.(3)不能如此求热量,因为热量不是状态函数,它是过程的改变量.仅表示吸、放的微小热量,它不是全微分.既然不是状态的函数,则不能写在积分号的上、下限上.或者说不能对积分.2功是过程改变量,它与所进行的过程有关,但为什么绝热功却仅与初末态有关,与中间过程无关?我们知道,热量与进行过程有关,但为什么在定体条件下吸的热量与中间过程无关?答:在一个封闭系统中内能改变只可能来自作功和热量的吸、放这两种形式.内能是状态的函数,内能的改变只与初末态有关,与中间过程无关.但是在绝热条件下作的功就等于内能改变,所以它也与中间过程无关了.同样,在定体条件下由于不作功,它吸、放的热量也等于内能改变,它与中间过程无关.3设某种电离化气体由彼此排斥的离子所组成,当这种气体经历绝热真空自由膨胀时,气体的温度将如何变化?为什么?答:气体分子在相互分离时排斥力对分子作正功,而保守力作的正功等于势能的减少.当气体经历绝热真空自由膨胀时,由于内能不变,势能减少.所以动能增加,气体温度应该升高.4有人说,准静态绝热膨胀与向真空自由膨胀及焦耳汤姆孙膨胀即节流膨胀都是绝热的。同样是绝热膨胀,怎么会出现三种截然不同的过程?它们对外作功的情况分别是怎样的?答:因为对于体积可以变化的系统,它的独立变量是两个.仅仅附加上一个条件“绝热膨胀”并不能确定它的末态,必须再加上另一个条件.例如准静态的绝热膨胀、等内能的(自由)膨胀、等焓的(节流)膨胀即焦耳-汤姆孙效应.在准静态绝热膨胀中,系统对外作的功等于系统内能的减少;在向真空自由膨胀中不作功;在节流膨胀中系统对外作的功等于;其中分别为末态与初态的压强与体积.5分别在p-V图、p-T图和T-V图上定性地画出理想气体下列过程曲线:(1)等体;(2)等压;(3)等温;(4)绝热。说明:1等体过程;2等压过程;3等温过程;4绝热过程;.6将一摩尔氮气与一摩尔氦气从相同状态出发准静态绝热压缩使温度各增加一倍。试问所需功何者大?为什么?答:绝热压缩氦气要比氮气所需作的功大些.因为从初态绝热压缩到末态所需作的功为由于单原子气体氦气的,双原子气体氮气的.所以在升高相同温度下绝热压缩氦气要比绝热压缩相同摩尔数的氮气作的功大些.7一定量理想气体从图(a)之状态1变到状态2,一次经由过程A,另一次经由过程B。或者由(b)图中的状态3变为状态4,一次经由过程C,另一次经由过程D。试问过程中吸收的热量与何者大?与何者大?过程中作的功与的符号如何?答:因为的内能改变等于的内能改变,也等于.另外作的功大于作的功.而,所以.因为循环是顺时针循环,所以循环功(系统对外作功),而循环是逆时针循环,循环功为.现在比较和这两个过程,它们作的功仍然是和,而它们的内能变化是相同的由知道.8在蒸气压缩式制冷机中,从冷凝器流出的液体经节流后温度降低了,并有部分液体变为同温度的蒸气,试解释为什么温度降低反而使液体蒸发?答:因为节流过程是等焓过程,即,其中下标1表示初态,下标2表示末态.已经知道液体经过节流以后温度降低,因而内能减小.而节流膨胀以后压强显著减小,要维持焓的不变只能显著地增加体积,部份液体的气化能显著增加体积,以维持焓的不变.9试判别下三种说法对否?(1)“系统经过一个正循环后,系统本身没有变化。”(2)“系统经过一个正循环后,不但系统本身没有变化,而且外界也没有变化。”(3)“系统经一个正循环后,再沿相反方向进行一逆卡诺循环,则系统本身以及外界都没有任何变化。”答:(1)正确,因为经过一个正循环以后,系统回到原来状态.(2)错误.系统经一个正循环后,外界在温度较高处输送热量给系统,又在温度较低处从系统获得热量,两者之差恰正是它从系统得到的功.虽然放、吸热量之差等于所获得的功,但功和热量是不等价的,所以已经对外界产生影响了.(3)错误.因为这里已经说其逆循环是卡诺循环,但是未确定是否是可逆的;它也未明确其正循环是否是正向可逆卡诺循环.我们知道,只有在正向逆向都是其循环轨迹线完全相同的可逆循环时,则经过一个正循环与逆循环后,系统与外界都没有发生变化.10任何可逆热机效率是否都可表成?答:不行.这一热机循环机效率表达式仅适用于可逆卡诺热机.虽然上述效率表达式中有与,但它并不表明这一热机仅与两个热源接触,因而它不一定是可逆卡诺热机.第五章热力学第二定律1下列过程是否可逆?若是不可逆的,它分别存在何种不可逆性?(1)由外界作功设法使水在恒温下蒸发;(2)将0的冰投入0.01的海洋中;(3)高速行驶的汽车突然刹车;(4)肥皂泡突然破裂;(5)食盐在水中溶解;(6)岩石风化;(7)木柴燃烧;(8)腌菜使菜变咸;(9)光合作用;(10)拉伸的弹簧突然撤除外力:分两种情况讨论:(a)在真空容器中;(b)在空气中。答:(1)由外界作功设法使水在恒温下蒸发:作功的方式可以有多种,例如:1将搅伴器放入与恒温热源相接触的水中,搅伴器作的功耗散转变为热使水蒸发,由于有耗散不可逆性,因而是不可逆的.2为了避免耗散不可逆性的存在,把搅伴器换为无摩擦的导热的气缸和活塞系统.将该系统浸入恒温热源中.恒温热源中还浸入另一开口容器,容器中装有水.当活塞对气缸中的理想气体作准静态等温压缩时,活塞作的功全部转化为热量由气缸向恒温热源释放,另一容器中的水吸收此热量后蒸发为水汽.这样的过程不仅是无耗散的,而且准静态压缩满足力学平衡条件,在恒温热源中的传热满足热平衡条件.但是在容器中的水蒸气要从液体表面附近扩散到大气中.例如,若恒温热源的温度为,则容器内水面附近的水蒸气的分压为1atm,但是大气中水蒸气的分压却是很低的,因而不满足的化学平衡条件(其中为水蒸汽的数密度),它仍然是不可逆的.3为了使上述装置能够满足化学平衡条件,就要将装有水的容器换为另另一个竖直放置的无摩擦的活塞气缸系统,气缸底存有水.这些水在密闭容器中吸收以恒温热源为中介,从另一活塞-气缸系统中等温压缩所释放出的热量.水吸热而蒸发为水蒸气.显然.在密闭气缸中进行的等温蒸发同时满足力学和热学平衡条件;在气缸中的水蒸汽的数密度又满足的化学平衡条件;加之是无摩擦的过程,准静态无耗散的条件全部满足,这样的过程才真正是可逆的.(2)将0的冰投入0.01的海洋中:虽然在这样的传热过程中海水与冰的温度差与海水的绝对温度之比满足的热学平衡条件.但是海水是含有3%NaCl的溶液,冰是不含有NaCl的纯水.所以在冰熔解过程中,海水中的NaCl向纯水扩散,这时它不满足的化学平衡条件,因而这样的过程是不可逆的.(3)高速行驶的汽车突然刹车与“(4)肥皂泡突然破裂”都是不满足力学平衡条件的非准静态过程,因而也是不可逆的.(5)食盐在水中溶解、“(7)木柴燃烧”、“(8)腌菜使菜变咸”(6)“岩石风化”是由于白天和夜晚的温度差,或者夏天和冬天的温度差比较大,由于热膨冷缩,使得岩石一再龟裂而导致风化的.其逆过程,也就是把被裂开为两片岩石合并成一块,应该使得在裂缝处的大部分分子都接近到分子作用半径以内,这样在分子作用力的作用下,两片岩石有可能合并成一块.而把两分子都接近到分子作用半径以内是要克服分子作用力作功的2若要利用大气的对流层中不同高度温度不同(即大气温度绝热递减率)来制造一部热机,在原则上是否可行?答:不可行.这可从几方面来予以说明:(1)我们知道“大气温度绝热递减”是如此产生的:在浮力作用下.一部分大气在上升过程中要克服重力作功以增加重力势能,由于它是一个绝热的孤立系统,它只有降低自身的温度,减少内能来维持能量守恒.当然,它在降温时会伴随有体积减少,因而外界还会对大气作一些功.由于大气压强随高度变化减小十分缓慢,可近似把这样的降温过程认为是等压的.在等压过程中降温所释放的能量全部用来增加重力势能,因而有这就是大气温度绝热递减率公式.1既然大气温度绝热递减来源于能量守恒原理,这说明大气中根本不存在两个温度不同的热源.没有高、低温热源的情况下热机怎么能工作呢?显然,这样的热机是根本不存在的.2从另一方面考虑,热机需要工作介质.一般来说工作介质必须不断地在高、低温热源之间来回移动.先与高温热源接触从而吸热,进而又与低温热源接触进行放热.若利用高层与低层大气温度的不同来制造热机,这一工作介质必须先在低处吸热,然后移动到高处.问题是工作介质上升过程中同样要克服重力作功,它的温度也要降低,等到它移动到高处时,其温度己经与高处温度相等或者差不多相等,它怎么能向高处放热呢?找不到工作物质也就找不到这样一个热机.(2)换一个角度,从平衡态来考虑,大气温度绝热递减率是在同时考虑到大气压强随高度的分布及大气在浮力作用下缓慢上升温度会下降这两种因素后所得到的结果.这种温度分布是一种平衡态的分布.假定安装上一只热机在低处吸热,又在高处放热.这样原来的温度分布改变了,因而平衡态被破坏了,本来静止不动的大气反而流动起来,这时就可以在大气中安装一系列的风机,它们能够不停地运转,从而构成第二类永动机.显然这也是不可能的.3一体积为2V的导热气缸,正中间用隔板将它隔开,左边盛有压强为的理想气体,右边为真空,外界温度恒定为.(1)将隔板迅速抽掉,气体自由膨胀到整个容器,问在过程中气体对外作的功及传的热各等于多少?(2)然后利用活塞B将气体缓慢地压缩到原来体积,在这过程中外界对气体作的功及传的热各等于多少?由于有过程(2),能否说过程(1)是可逆过程?为什么?答:5.8在密闭的房间里,有两个开口容器A和B一高一低,都盛有同一种液体(见图)。假定起初两液体的温度相同。设上面容器中液体蒸发的蒸气凝结于下方容器中,同样下方容器中蒸发的蒸气也凝结于上方容器中,从而使下方容器中的液体变暖而上方液体变冷。这是否与第二定律相矛盾?若下边容器中水温为17,两容器水面相距1m,求两容器最大温度差。答:这不与第二定律相矛盾.因为A在高处,它的重力势能高,B在低处它的重力势能低.蒸气从A运动到B及从B运动到A是在没有外力驱动下自发进行的,所以应该维持能量守恒,因而A处温度应该降低一点,B处温度应该升高一点.若下边容器中水温为17,两容器水面相距1m,则可以由公式求得,其中,.其中是由水蒸汽分子是三原子刚性分子,它有3个平动和3个转动自由度,由能量均分定理求得的.由此可以算得.4热力学第二定律能适用于我们这个宇宙.例如:(1)热量自发地从高温物体流向低温物体。按照傅里叶定律,温度差越大传递的热量越多。另外,任何物体的,因此在有限范围内,可以达到热平衡。假如另有一个宇宙,它的第二定律正好与我们这个宇宙相反,即热量自发地从低温物体传向高温物体,你能够想象出该宇宙中的一些情况吗?(2)在我们这个宇宙中,气体受到压缩时体积总是变小的,即等温压缩系数是正的,而且气体总是自发地从高压流向低压的,压强差越大,气体流动也越快,在不受外界影响的条件下,气体最终总能达到平衡。假如在另一个宇宙中,气体是自发地从低压流向高压的,你也能想象出该宇宙中的一些情况吗?试问在违反第二定律的世界中生物能否生存?由此去体会第二定律是自然界的普适规律.答:(1)在的情况下,热量自发地从低温物体流向高温物体的宇宙是不可能存在的.因为假定这样的宇宙存在,考虑在宇宙中有比较接近的两个物体A和B,若A的温度比较高,B的温度比较低.热量将要从B自发地流向A,由于,B的温度将要进一步降低,而A的温度将要进一步升高,A与B的温度差将扩大.按照傅里叶定律,温度差越大传递的热量越多,因而A和B的温度将分别更加快地升高和降低,这样的过程将要无限止地进行下去,一直到A的温度趋向非常大,B的温度趋向绝对零度.由于宇宙中任何物体之间都会存在温度差,因而都会有热传递,其总的结果是:宇宙中只存在无穷大和绝对零度这两个极端温度,这样的宇宙还可能存在吗?(2)同样,气体自发地从低压流向高压的宇宙也是不可能存在的.因为它与“气体受到压缩时体积总是变小,即等温压缩系数是正的”有矛盾.例如,假定宇宙中有一个局部,它由A和B两部分组成,A的压强比较大,B的压强比较小.正如前面讲到的,气体将要自发地从低压处流向高压处结果A的压强将更大,B的压强将更小.按照,对于A,由于,因而,A的体积将要缩小,A的气体变稠密.同样,对于B,因而,B的体积将要扩大,B气体将变得更稀疏.而A、B之间压强差的增加又更进一步使得气体从B流向A,从而使得A的气体分子越来越多,A的体积越来越小,因而越来越稠密;B气体分子越来越少,气体体积越来越大,因而越来越稀疏,体积也越来越大.最后,B中气体分子全部流到A中,B变为几乎占有整个体积的真空,而A变为几乎在一个点上集中了所有分子.当然,A与周围其他气体之间也会有压强差,其他地方的气体分子也会自发地从低压流向高压.流动的结果仍然是,压强低的部分变为体积非常非常大的的真空,而压强高的部分却变为非常非常稠密的一个点.最后,整个宇宙的所有粒子都全部集中在一个奇点上,而宇宙的其它部分却是没有任何粒子的真空.显然,这样的宇宙是不能存在的,生物更不可能生存.因而气体自发地从低压流向高压也是不可能的.从以上的分析可以知道,我们这个宇宙必须是能够严格地满足热力学第二定律的宇宙.5试问(1)为什么可以把两种不同气体之间的互扩散看为这两种气体先单独进行自由膨胀然后再“合并”在同一相同体积的容器中?(2)在自由膨胀、扩散中分别有怎样的可用能被浪费?(3)在两相同物体相互接触达到热平衡过程中有什么可用能被浪费?答:(1)以图来说明扩散是两个自由膨胀过程的“迭加”上图中(a)图是有一隔板把容器分隔为体积相等的两部分,其中左、右边分别装有以圆圈和方块来表示的两种粒子,它们的粒子数相等,温度也相等.把隔板抽除,这时圆圈粒子和方块粒子要相互扩散而充满整个容器,如图(b)所示.现在用另一种方法来实现这一过程.在有隔板的容器中,隔板左边充有圆圈粒子,而右边为真空.如图(c)所示.把隔板抽除后,圆圈粒子要自由膨胀充满整个容器中,如图(d)所示.在另一有隔板的容器中,隔板左边为真空,而右边充有相同数量的方块粒子,如图(e)所示.隔板抽除后,方块粒子要自由膨胀充满整个容器中,如图(f)所示.现在把图(d)和图(f)两个容器中的圆圈粒子与方块粒子合并到同一相同大小的容器中.它是如此进行的:把(d)图容器的右壁换为只允许方块粒子透过,而不允许圆圈粒子透过的半透膜A;又把(f)图容器的左壁换为只允许圆圈粒子透过,而不允许方块粒子透过的另一半透膜B(说明:这在理论上是能够做到的.只要是两种不同的粒子,它们之间有差异,则迟早总能做出两种半透膜,每一种膜只允许透过一种粒子).如果把这两容器如图(g)那样套在一起,并且假定这两个容器底面的相互接触部分的摩擦可以忽略.则我们只要缓慢地、轻轻地推动(d)容器使两个容器进一步靠拢.则(d)容器中的圆圈粒子将要慢慢地透过半透膜A进入到(d)和(f)公共的空间中.而方块粒子也能透过另一半透膜B进入(d)和(f)的公共空间中.当(d)和(f)完全合并到一起时.圆圈粒子也与方块粒子完全合并在同一个容器中.显然,它是与图(b)完全相同的.而图(b)就是图(a)中隔板抽除后经过扩散而得到的平衡态.由以上的分析可以知道,两种不同气体之间的扩散可以等价为两种不同气体分别进行单独的自由膨胀以后再进行“合并”.我们在这里加上双引号是因为它是在十分理想情况下的合并.(2)自由膨胀中有进行等温膨胀扩大相同体积的膨胀功这一可用能被全部浪费.而在扩散中有两种不同气体分别进行等温膨胀的可用能都被浪费.(3)在两个相同物体相互接触达到热平衡过程中有如下的可用能被浪费:两个相同物体处于不同的温度,可以认为它们分别是高温热源与低温热源.热接触达到热平衡的目的是使它们的温度相等.若不是使两物体直接接触,而是把一个可逆卡诺热机工作于这两个物体之间.可逆卡诺热机每经过一次循环,高温物体的温度就降低一点,低温物体的温度就升高一点,同时对外作出一点功.这样,一次次的循环进行下去,两个物体的温度最后必然会相同,这时它们对外作出的功是最大的,因而称为最大功.这一最大功就是两个温度不同物体的可用能.正因为它们作出的功最大,因而没有任何可用能被浪费,这样的过程是可逆的.但是假如把两温度不同的物体直接接触而达到热平衡,则一点功也没有被利用到,其可用能全部被浪费了,这样的过程不仅是不可逆的,而且是最不可逆的(即不可逆程度最大的,因为可用能被浪费的程度就可以被用来衡量不可逆的程度).6试在T-S图、T-u图、T-V图、h-V图上分别画出理想气体的卡诺循环曲线。其中u和h分别表示理想气体的单位质量的内能和单位质量的焓.答:(1)(2)(3)图(1)为T-S图,其中AB及CD分别为T1及T2温度的等温过程.BC及DA为绝热过程.图(2)为T-u图.由于理想气体的内能,在内能常数u0为零的情况下是与绝对温度成正比的,所以在T-u图中,理想气体的所有状态都位于通过原点O的一条倾斜的直线上,这条直线的斜率为.在卡诺循环中,温度分别为T1及T2的AB及CD的等温过程,在T-u图的斜线上仅不过以两个点表示.而BC及DA的绝热过程则是相互重合的实线段,如图所示.在图(3)的T-V图中,绝热方程为,即.由于,说明绝热过程在T-V图中是一条双曲线.在T-V图中示意地表示了BC及DA的绝热过程.至于h-V图,由于理想气体的焓h=cpT+h0,在焓常数h0为零的情况下是与绝对温度成正比的h=cpT.说明h的变化与T的变化是一样的,仅不过差一个比例系数.因而卡诺循环的h-V图是与T-V图完全类似的.注意到在所有的图中并未标明坐标的数值,所以完全可以用T-V图来代替h-V图,只要把纵坐标T换为h.7西风吹过南北纵贯的山脉,空气由山脉西边的谷底越过,流动到山顶到达东边,再向下流动。空气在上升时膨胀,下降时压缩。若认为这样的上升、下降过程是准静态的,试问这样的过程是不是可逆的?若空气中含有大量的水汽,空气从西边流到山顶时就开始凝结成雨,试问这样的过程也是可逆的吗?若仅凝结为云而没有下雨又如何?在这两个过程中的熵是如何变化的?答:西风吹过南北纵贯的山脉,空气在上升时膨胀,下降时压缩。若认为这样的上升、下降过程是准静态的,这样的过程是可逆的.若在空气上升、下降过程中仅凝结为云而没有下雨,这仍然是可逆的,因为凝结和蒸发一般是在足够缓慢的情况下进行的,这仍然是一个准静态过程.但是假如下了雨,则过程必然是不可逆的.因为空中的雨下落到地面上,其重力势能全部转变为热能,这是一个耗散过程,因而是不可逆的.8试判断下列结论是否正确?为什么?(1)不可逆过程一定是自发的而自发过程一定是不可逆的;(2)自发过程的熵总是增加的;(3)在绝热过程中dQ=0,所以dS=0。(4)为了计算从初态出发经绝热不可逆过程达到终态的熵变,可设计一个联接初末态的某一绝热可逆过程进行计算。答:(1)不可逆过程不一定是自发的.因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急安全培训公司课件
- 应急与安全管理培训内容课件
- 2025年自考专业(会计)模拟试题附答案详解【轻巧夺冠】
- 买菜合同(标准版)
- 2023年度冶金工业技能鉴定每日一练试卷(培优)附答案详解
- 2024年2月湖南省直机关遴选公务员面试真题带答案详解
- 2025年绿色建筑材料市场推广策略与政策支持下的绿色建筑市场需求预测报告
- 2025年工业互联网平台量子通信技术与数字版权保护的应用预研报告
- 2025年工业互联网平台AR交互技术在人工智能与物联网融合中的应用报告
- 2025年绿色建筑认证体系在绿色建筑绿色建筑社区经济中的应用与发展报告
- 第1课 独一无二的我教学设计-2025-2026学年小学心理健康苏教版三年级-苏科版
- 反对邪教主题课件
- 化工阀门管件培训课件
- 新疆吐鲁番地区2025年-2026年小学六年级数学阶段练习(上,下学期)试卷及答案
- TCT.HPV的正确解读课件
- 白酒生产安全员考试题库及答案解析
- 广东春考试卷及答案
- 《树之歌》课件 小学部编版语文二年级上册
- 画廊与画家签约合同范本
- 2025-2026冀人版三年级科学上册教学设计(附目录)
- 田径百米教学课件
评论
0/150
提交评论