应用回归分析实验报告6.docx_第1页
应用回归分析实验报告6.docx_第2页
应用回归分析实验报告6.docx_第3页
应用回归分析实验报告6.docx_第4页
应用回归分析实验报告6.docx_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实 验 报 告实验课程 应用回归分析 第 6 次实验 实验日期2012.11.22 指导教师 王振羽 班级 基地班 学号 1007402072 姓名 张艺璇 成绩 一、实验目的掌握利用统计软件SAS的REG过程中各种最优准则,选取最好的线性回归方程的方法. 掌握SPSS中用前进法、后退法、逐步回归法选择自变量二、实验内容1在教材习题5.9的问题中,使用直到2004年的数据。(数据在“回归人大数据12-学生.xls:ex5_9-07年”中 ),利用统计软件(1) 写出修正的复决定系数AdjRSQ最好的三个回归方程,及相应的Cp值、AIC值。(2) 写出Cp准则最好的三个回归方程,及相应的AdjRSQ值、AIC值。(3) 写出用向前法 (a进 = 0.05,0.10) 得到的两个回归方程;(4) 写出用后退法 (a退 = 0.10,0.15) 得到的两个回归方程;(5) 写出用逐步回归法 (a进,a退 = 0.05,0.10; 0.10, 0.15; 0.15, 0.20) 得到的三个回归方程;(6) 在你看来,上面写出的回归方程中,哪个最好?(写出理由) 本次实验结果随作业交上来。三、实验结果与分析(包括运行结果及其数据分析、解释等)(1) 写出修正的复决定系数AdjRSQ最好的三个回归方程,及相应的Cp值、AIC值。用SAS寻找最优子集程序如下:proc reg;model y=x1-x6/selection=adjrsq;run;输出部分结果如下:系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-1.138.325-3.503.002x1-1.487.136-1.313-10.966.000x21.171.1883.0776.237.000x3-2.4671.258-1.009-1.962.063x4.155.035.2404.445.000x6-.058.018-.057-3.151.005a. 因变量: y系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-1.226.345-3.556.002x1-1.455.142-1.285-10.228.000x21.235.2053.2466.027.000x3-2.4751.268-1.012-1.952.065x4.162.036.2514.477.000x5-.061.075-.206-.818.423x6-.053.019-.053-2.761.012a. 因变量: y系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-1.199.344-3.491.002x1-1.567.138-1.384-11.394.000x2.808.0352.12423.165.000x4.165.037.2554.498.000x6-.058.019-.057-2.979.007a. 因变量: y故修正的复决定系数AdjRSQ最好的三个回归方程为:y=-1.138-1.487x1+1.171x2-2.467x3+0.155x4-0.058x6 (cp=5.6693,AIC=-153.1970)y=-1.226-1.455x1+1.235x2-2.475x3+0.162x4-0.061x5-0.053x6 (cp=7.0000,AIC=-153.0858)y=-1.199-1.567x1+0.808x2+0.165x4-0.058x6 (cp=7.4571,AIC=-150.6537)(2) 写出Cp准则最好的三个回归方程,及相应的AdjRSQ值、AIC值。用SAS寻找最优子集程序如下:proc reg;model y=x1-x6/selection=cp;run;输出部分结果如下:故Cp准则最好的三个回归方程为:y=-1.138-1.487x1+1.171x2-2.467x3+0.155x4-0.058x6 (AdjRSQ=0.9943,AIC=-153.1970)y=-1.226-1.455x1+1.235x2-2.475x3+0.162x4-0.061x5-0.053x6 (AdjRSQ=0.9942,AIC=-153.0858)y=-1.199-1.567x1+0.808x2+0.165x4-0.058x6 (AdjRSQ=0.9935,AIC=-150.6537)(3) 写出用向前法 (a进 = 0.05,0.10) 得到的两个回归方程;a进 = 0.05:模型汇总模型RR 方调整 R 方标准 估计的误差1.974a.949.947.162617462.994b.989.988.076818283.996c.992.991.065515374.997d.995.994.05654776a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。Anovae模型平方和df均方FSig.1回归12.223112.223462.225.000a残差.66125.026总计12.884262回归12.74326.3711079.703.000b残差.14224.006总计12.884263回归12.78634.262992.923.000c残差.09923.004总计12.884264回归12.81443.2041001.833.000d残差.07022.003总计12.88426a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。e. 因变量: y系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-.015.045-.332.743x2.371.017.97421.499.0002(常量).202.0316.474.000x2.760.0421.99717.970.000x1-1.181.126-1.043-9.383.0003(常量)-1.037.393-2.639.015x2.817.0402.14620.275.000x1-1.553.159-1.371-9.751.000x4.125.039.1933.162.0044(常量)-1.199.344-3.491.002x2.808.0352.12423.165.000x1-1.567.138-1.384-11.394.000x4.165.037.2554.498.000x6-.058.019-.057-2.979.007a. 因变量: y故得到的回归方程为:y=-1.199-1.567x1+0.808x2+0.165x4-0.058x6a进 = 0.10:模型汇总模型RR 方调整 R 方标准 估计的误差1.974a.949.947.162617462.994b.989.988.076818283.996c.992.991.065515374.997d.995.994.056547765.998e.995.994.05320788a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。e. 预测变量: (常量), x2, x1, x4, x6, x3。Anovaf模型平方和df均方FSig.1回归12.223112.223462.225.000a残差.66125.026总计12.884262回归12.74326.3711079.703.000b残差.14224.006总计12.884263回归12.78634.262992.923.000c残差.09923.004总计12.884264回归12.81443.2041001.833.000d残差.07022.003总计12.884265回归12.82552.565906.011.000e残差.05921.003总计12.88426a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。e. 预测变量: (常量), x2, x1, x4, x6, x3。f. 因变量: y系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-.015.045-.332.743x2.371.017.97421.499.0002(常量).202.0316.474.000x2.760.0421.99717.970.000x1-1.181.126-1.043-9.383.0003(常量)-1.037.393-2.639.015x2.817.0402.14620.275.000x1-1.553.159-1.371-9.751.000x4.125.039.1933.162.0044(常量)-1.199.344-3.491.002x2.808.0352.12423.165.000x1-1.567.138-1.384-11.394.000x4.165.037.2554.498.000x6-.058.019-.057-2.979.0075(常量)-1.138.325-3.503.002x21.171.1883.0776.237.000x1-1.487.136-1.313-10.966.000x4.155.035.2404.445.000x6-.058.018-.057-3.151.005x3-2.4671.258-1.009-1.962.063a. 因变量: y故得到的回归方程为:y=-1.138-1.487x1+1.171x2-2.467x3+0.155x4-0.058x6 (4) 写出用后退法 (a退 = 0.10,0.15) 得到的两个回归方程;a退 = 0.15:模型汇总模型RR 方调整 R 方标准 估计的误差1.998a.996.994.053632152.998b.995.994.05320788a. 预测变量: (常量), x6, x2, x4, x1, x5, x3。b. 预测变量: (常量), x6, x2, x4, x1, x3。Anovac模型平方和df均方FSig.1回归12.82762.138743.222.000a残差.05820.003总计12.884262回归12.82552.565906.011.000b残差.05921.003总计12.88426a. 预测变量: (常量), x6, x2, x4, x1, x5, x3。b. 预测变量: (常量), x6, x2, x4, x1, x3。c. 因变量: y系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-1.226.345-3.556.002x1-1.455.142-1.285-10.228.000x21.235.2053.2466.027.000x3-2.4751.268-1.012-1.952.065x4.162.036.2514.477.000x5-.061.075-.206-.818.423x6-.053.019-.053-2.761.0122(常量)-1.138.325-3.503.002x1-1.487.136-1.313-10.966.000x21.171.1883.0776.237.000x3-2.4671.258-1.009-1.962.063x4.155.035.2404.445.000x6-.058.018-.057-3.151.005a. 因变量: y故得到的回归方程为:y=-1.138-1.487x1+1.171x2-2.467x3+0.155x4-0.058x6a退 = 0.10:系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-1.226.345-3.556.002x1-1.455.142-1.285-10.228.000x21.235.2053.2466.027.000x3-2.4751.268-1.012-1.952.065x4.162.036.2514.477.000x5-.061.075-.206-.818.423x6-.053.019-.053-2.761.0122(常量)-1.138.325-3.503.002x1-1.487.136-1.313-10.966.000x21.171.1883.0776.237.000x3-2.4671.258-1.009-1.962.063x4.155.035.2404.445.000x6-.058.018-.057-3.151.005a. 因变量: y故得到的回归方程为:y=-1.138-1.487x1+1.171x2-2.467x3+0.155x4-0.058x6(5) 写出用逐步回归法 (a进,a退 = 0.05,0.10; 0.10, 0.15; 0.15, 0.20) 得到的三个回归方程;a进,a退 = 0.05,0.10:模型汇总模型RR 方调整 R 方标准 估计的误差1.974a.949.947.162617462.994b.989.988.076818283.996c.992.991.065515374.997d.995.994.05654776a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。Anovae模型平方和df均方FSig.1回归12.223112.223462.225.000a残差.66125.026总计12.884262回归12.74326.3711079.703.000b残差.14224.006总计12.884263回归12.78634.262992.923.000c残差.09923.004总计12.884264回归12.81443.2041001.833.000d残差.07022.003总计12.88426系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-.015.045-.332.743x2.371.017.97421.499.0002(常量).202.0316.474.000x2.760.0421.99717.970.000x1-1.181.126-1.043-9.383.0003(常量)-1.037.393-2.639.015x2.817.0402.14620.275.000x1-1.553.159-1.371-9.751.000x4.125.039.1933.162.0044(常量)-1.199.344-3.491.002x2.808.0352.12423.165.000x1-1.567.138-1.384-11.394.000x4.165.037.2554.498.000x6-.058.019-.057-2.979.007a. 因变量: y故得到的回归方程为:y=0.202-1.181x1+0.760x2a进,a退 = 0.10, 0.15:模型汇总模型RR 方调整 R 方标准 估计的误差1.974a.949.947.162617462.994b.989.988.076818283.996c.992.991.065515374.997d.995.994.056547765.998e.995.994.05320788a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。e. 预测变量: (常量), x2, x1, x4, x6, x3。Anovaf模型平方和df均方FSig.1回归12.223112.223462.225.000a残差.66125.026总计12.884262回归12.74326.3711079.703.000b残差.14224.006总计12.884263回归12.78634.262992.923.000c残差.09923.004总计12.884264回归12.81443.2041001.833.000d残差.07022.003总计12.884265回归12.82552.565906.011.000e残差.05921.003总计12.88426a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。e. 预测变量: (常量), x2, x1, x4, x6, x3。f. 因变量: y系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-.015.045-.332.743x2.371.017.97421.499.0002(常量).202.0316.474.000x2.760.0421.99717.970.000x1-1.181.126-1.043-9.383.0003(常量)-1.037.393-2.639.015x2.817.0402.14620.275.000x1-1.553.159-1.371-9.751.000x4.125.039.1933.162.0044(常量)-1.199.344-3.491.002x2.808.0352.12423.165.000x1-1.567.138-1.384-11.394.000x4.165.037.2554.498.000x6-.058.019-.057-2.979.0075(常量)-1.138.325-3.503.002x21.171.1883.0776.237.000x1-1.487.136-1.313-10.966.000x4.155.035.2404.445.000x6-.058.018-.057-3.151.005x3-2.4671.258-1.009-1.962.063a. 因变量: y故得到的回归方程为:y=0.202-1.181x1+0.760x2a进,a退 = 0.15, 0.20:模型汇总模型RR 方调整 R 方标准 估计的误差1.974a.949.947.162617462.994b.989.988.076818283.996c.992.991.065515374.997d.995.994.056547765.998e.995.994.05320788a. 预测变量: (常量), x2。b. 预测变量: (常量), x2, x1。c. 预测变量: (常量), x2, x1, x4。d. 预测变量: (常量), x2, x1, x4, x6。e. 预测变量: (常量), x2, x1, x4, x6, x3。Anovaf模型平方和df均方FSig.1回归12.223112.223462.225.000a残差.66125.026总计12.884262回归12.74326.3711079.703.000b残差.14224.006总计12.884263回归12.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论