解三角形专题复习.doc_第1页
解三角形专题复习.doc_第2页
解三角形专题复习.doc_第3页
解三角形专题复习.doc_第4页
解三角形专题复习.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解三角形小课题研究 高考专题复习v 高考专题解三角形一、解三角形专题复习1、正弦定理及其变形 2、正弦定理适用情况:(1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况)已知a,b和A,求B时的解的情况: 如果sinAsinB,则B有唯一解;如果sinAsinB1,则B无解.3、余弦定理及其推论 4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边。5、常用的三角形面积公式(1);(2)(两边夹一角);6、三角形中常用结论(1)(2)(3)在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。二、典型例题题型1 边角互化例1 在中,若,则角的度数为 【解析】由正弦定理可得a:b:c=3:5:7,,令a、b、c依次为3、5、7,则cosC= 因为,所以C=例2 若、是的三边,则函数的图象与轴【 】A、有两个交点B、有一个交点C、没有交点 D、至少有一个交点 【解析】由余弦定理得,所以=,因为1,所以0,因此0恒成立,所以其图像与X轴没有交点。题型2 三角形解的个数例3在中,分别根据下列条件解三角形,其中有两解的是【 】A、,;B、,;C、,; D、,。题型3 面积问题例4 的一个内角为120,并且三边构成公差为4的等差数列,则的面积为 【解析】设ABC的三边分别:x4、x、x4,C=120,由余弦定理得:x4=x4x2x4xcos120,解得:x=10ABC三边分别为6、10、14。题型4 判断三角形形状例5 在中,已知,判断该三角形的形状。【解析】把已知等式都化为角的等式或都化为边的等式。方法一:由正弦定理,即知由,得或 即为等腰三角形或直角三角形题型4 判断三角形形状例5 在中,已知,判断该三角形的形状。【解析】把已知等式都化为角的等式或都化为边的等式。方法一:由正弦定理,即知由,得或即为等腰三角形或直角三角形方法二:同上可得由正、余弦定理,即得: 即或 即为等腰三角形或直角三角形【点拨】判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;(角化边)二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状。(边化角)题型5 正弦定理、余弦定理的综合运用例6在中,分别为角A,B,C的对边,且且(1) 当时,求的值; (2) 若角B为锐角,求p的取值范围。【解析】(1)由题设并由正弦定理,得,解得,或(2)由余弦定理,=即,因为,所以,由题设知,所以【解析】(1)由题设并由正弦定理,得,解得,或(2)由余弦定理,=即,因为,所以,由题设知,所以题型6、解三角形的实际应用如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?【解题思路】解决测量问题的过程先要正确作出图形,把实际问题中的条件和所求转换成三角形中的已知和未知的边、角.本题应先利用求出边长,再进行进一步分析.北甲乙解析如图,连结,由已知,又,是等边三角形,由已知,在中,由余弦定理,因此,乙船的速度的大小为(海里/小时)答:乙船每小时航行海里【点拨】解三角形时,通常会遇到两种情况:已知量与未知量全部集中在一个三角形中,此时应直接利用正弦定理或余弦定理;已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.题型7、经典高考题1、(2009全国卷理) 在中,内角A、B、C的对边长分别为、,已知,且 求b 解析、解法一:在中则由正弦定理及余弦定理有:化简并整理得:.又由已知.解得. 2、(2009浙江)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值解析:(I)因为,又由,得, (II)对于,又,或,由余弦定理得, 3.(2009北京理)在中,角的对边分别为,。 ()求的值; ()求的面积.4、(2009全国卷文)设ABC的内角A、B、C的对边长分别为a、b、c,,,求B.5、(2009安徽卷理)在ABC中,, sinB=.(I)求sinA的值 , (II)设AC=,求ABC的面积.6、(2009江西卷文)在中,所对的边分别为,(1)求; (2)若,求,,7、(2009江西卷理)中,所对的边分别为,,. (1)求; (2)若,求. 8、(2009天津卷文)在中, ()求AB的值。 ()求的值。9、(2010年高考天津卷理科7)在ABC中,内角A、B、C的对边分别是a、b、c,若,sinC=2sinB,则A=(A)30 (B)60 (C)120 (D)15010(2010年高考全国2卷理数17)(本小题满分10分)中,为边上的一点,求11.(2010年高考浙江卷理科18)在中,角A,B,C所对的边分别为a,b,c,已知cos2C= -。 ()求sinC的值; ()当a=2,2sinA=sinC,求b及c的长。12、(2010年高考广东卷理科16)已知函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论