金融数据处理(波动溢出).doc_第1页
金融数据处理(波动溢出).doc_第2页
金融数据处理(波动溢出).doc_第3页
金融数据处理(波动溢出).doc_第4页
金融数据处理(波动溢出).doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

金融数据处理(波动溢出)由于Eviews在对波动溢出效应估计方面,只能得到对角矩阵。因此在用BEKK模型时,将使用S-Plus配合来估计波动溢出效应。实验步骤:第一步 检查平稳性第二步 协整检验第三步 Granger因果检验第四步 VAR第五步 VEC第六步 BEKK第一步 检查平稳性Null Hypothesis: RHIS has a unit rootExogenous: Constant, Linear TrendLag Length: 0 (Automatic based on SIC, MAXLAG=21)t-StatisticProb.*Augmented Dickey-Fuller test statistic-35.207310.0000Test critical values:1% level-3.9662335% level-3.41381510% level-3.128983*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(RHIS)Method: Least SquaresDate: 11/20/11 Time: 16:28Sample (adjusted): 1/06/2006 11/08/2010Included observations: 1124 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.RHIS(-1)-1.0502140.029829-35.207310.0000C0.0004970.0012360.4022690.6876TREND(1/04/2006)-6.72E-081.90E-06-0.0353410.9718R-squared0.525112Mean dependent var-1.09E-06Adjusted R-squared0.524264S.D. dependent var0.029972S.E. of regression0.020673Akaike info criterion-4.917329Sum squared resid0.479076Schwarz criterion-4.903918Log likelihood2766.539Hannan-Quinn criter.-4.912261F-statistic619.7774Durbin-Watson stat1.999385Prob(F-statistic)0.000000可知,rhis系列没有单位根,即是平稳的。Null Hypothesis: RNQI has a unit rootExogenous: Constant, Linear TrendLag Length: 0 (Automatic based on SIC, MAXLAG=21)t-StatisticProb.*Augmented Dickey-Fuller test statistic-36.799060.0000Test critical values:1% level-3.9662335% level-3.41381510% level-3.128983*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(RNQI)Method: Least SquaresDate: 11/20/11 Time: 16:27Sample (adjusted): 1/06/2006 11/08/2010Included observations: 1124 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.RNQI(-1)-1.0941330.029733-36.799060.0000C-0.0004430.001071-0.4133050.6795TREND(1/04/2006)1.00E-061.65E-060.6096650.5422R-squared0.547102Mean dependent var-5.67E-06Adjusted R-squared0.546294S.D. dependent var0.026591S.E. of regression0.017911Akaike info criterion-5.204124Sum squared resid0.359626Schwarz criterion-5.190713Log likelihood2927.718Hannan-Quinn criter.-5.199056F-statistic677.0856Durbin-Watson stat2.010733Prob(F-statistic)0.000000可见,rnqi是平稳的Null Hypothesis: RSSE has a unit rootExogenous: Constant, Linear TrendLag Length: 0 (Automatic based on SIC, MAXLAG=21)t-StatisticProb.*Augmented Dickey-Fuller test statistic-33.951420.0000Test critical values:1% level-3.9662335% level-3.41381510% level-3.128983*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(RSSE)Method: Least SquaresDate: 11/20/11 Time: 16:29Sample (adjusted): 1/06/2006 11/08/2010Included observations: 1124 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.RSSE(-1)-1.0139250.029864-33.951420.0000C0.0026660.0012762.0890620.0369TREND(1/04/2006)-3.18E-061.96E-06-1.6203640.1054R-squared0.506971Mean dependent var-3.88E-06Adjusted R-squared0.506092S.D. dependent var0.030314S.E. of regression0.021304Akaike info criterion-4.857180Sum squared resid0.508777Schwarz criterion-4.843769Log likelihood2732.735Hannan-Quinn criter.-4.852112F-statistic576.3509Durbin-Watson stat2.000314Prob(F-statistic)0.000000可见,rsse序列是平稳的。第二步 协整检验Date: 11/20/11 Time: 16:30Sample (adjusted): 1/12/2006 11/08/2010Included observations: 1120 after adjustmentsTrend assumption: Linear deterministic trendSeries: RHIS RNQI RSSELags interval (in first differences): 1 to 4Unrestricted Cointegration Rank Test (Trace)HypothesizedTrace0.05No. of CE(s)EigenvalueStatisticCritical ValueProb.*None *0.222478694.669929.797070.0001At most 1 *0.185719412.829015.494710.0001At most 2 *0.150534182.72473.8414660.0000Trace test indicates 3 cointegrating eqn(s) at the 0.05 level* denotes rejection of the hypothesis at the 0.05 level*MacKinnon-Haug-Michelis (1999) p-valuesUnrestricted Cointegration Rank Test (Maximum Eigenvalue)HypothesizedMax-Eigen0.05No. of CE(s)EigenvalueStatisticCritical ValueProb.*None *0.222478281.840921.131620.0001At most 1 *0.185719230.104314.264600.0001At most 2 *0.150534182.72473.8414660.0000Max-eigenvalue test indicates 3 cointegrating eqn(s) at the 0.05 level* denotes rejection of the hypothesis at the 0.05 level*MacKinnon-Haug-Michelis (1999) p-valuesUnrestricted Cointegrating Coefficients (normalized by b*S11*b=I):RHISRNQIRSSE147.6973-189.3795-40.1063793.0083739.50010-2.556401-15.00984-48.00880108.6994Unrestricted Adjustment Coefficients (alpha):D(RHIS)-0.004785-0.006733-0.003038D(RNQI)0.005305-0.0069690.000477D(RSSE)0.001030-0.001374-0.0086351 Cointegrating Equation(s):Log likelihood8569.234Normalized cointegrating coefficients (standard error in parentheses)RHISRNQIRSSE1.000000-1.282214-0.271544(0.05596)(0.04073)Adjustment coefficients (standard error in parentheses)D(RHIS)-0.706744(0.08719)D(RNQI)0.783598(0.08442)D(RSSE)0.152080(0.10022)2 Cointegrating Equation(s):Log likelihood8684.286Normalized cointegrating coefficients (standard error in parentheses)RHISRNQIRSSE1.0000000.000000-0.088210(0.05379)0.0000001.0000000.142983(0.04732)Adjustment coefficients (standard error in parentheses)D(RHIS)-1.3330030.640229(0.09679)(0.10728)D(RNQI)0.135458-1.280001(0.09282)(0.10288)D(RSSE)0.024311-0.249262(0.11822)(0.13103)由于prob很小,说明rhis , rnqi , rsse是协整的,具有长期的均衡关系。第三步 Granger因果检验Pairwise Granger Causality TestsDate: 11/20/11 Time: 16:33Sample: 1/04/2006 11/08/2010Lags: 5Null Hypothesis:ObsF-StatisticProb.RNQI does not Granger Cause RHIS112062.74391.E-57RHIS does not Granger Cause RNQI0.535950.7492RSSE does not Granger Cause RHIS11202.999940.0107RHIS does not Granger Cause RSSE1.432820.2097RSSE does not Granger Cause RNQI11202.343450.0396RNQI does not Granger Cause RSSE8.424518.E-08可知,RNQI是RHIS的Granger原因,RHIS不是RNQI的Granger原因; RSSE是RHIS的Granger原因,RHIS不是RSSE的Granger原因; RSSE是RNQI的Granger原因,RNQI是RSSE的Granger原因。第四步 VARVector Autoregression EstimatesDate: 11/20/11 Time: 16:38Sample (adjusted): 1/09/2006 11/08/2010Included observations: 1123 after adjustmentsStandard errors in ( ) & t-statistics in RHISRNQIRSSERHIS(-1)-0.2114520.002593-0.028258(0.03487)(0.03401)(0.03993)-6.06457 0.07622-0.70777RHIS(-2)-0.0147010.048541-0.011387(0.03124)(0.03047)(0.03577)-0.47064 1.59292-0.31836RNQI(-1)0.558608-0.1011990.228046(0.03247)(0.03167)(0.03718) 17.2061-3.19530 6.13428RNQI(-2)0.179709-0.0752440.050368(0.03608)(0.03520)(0.04131) 4.98108-2.13787 1.21919RSSE(-1)-0.0600390.021830-0.020169(0.02919)(0.02847)(0.03342)-2.05708 0.76670-0.60348RSSE(-2)-0.009692-0.020194-0.011206(0.02920)(0.02848)(0.03344)-0.33192-0.70892-0.33515C0.0005089.74E-050.000868(0.00055)(0.00053)(0.00063) 0.92586 0.18206 1.38193R-squared0.2181830.0149940.034557Adj. R-squared0.2139800.0096980.029366Sum sq. resids0.3754820.3573310.492331S.E. equation0.0183430.0178940.021004F-statistic51.907452.8313816.657596Log likelihood2900.3872928.2082748.254Akaike AIC-5.152960-5.202508-4.882019Schwarz SC-5.121645-5.171194-4.850704Mean dependent0.0004330.0001000.000855S.D. dependent0.0206890.0179810.021319Determinant resid covariance (dof adj.)3.36E-11Determinant resid covariance3.30E-11Log likelihood8771.514Akaike information criterion-15.58417Schwarz criterion-15.49023第五步 VECVector Error Correction EstimatesDate: 11/20/11 Time: 16:47Sample (adjusted): 1/10/2006 11/08/2010Included observations: 1122 after adjustmentsStandard errors in ( ) & t-statistics in Cointegrating Eq:CointEq1RHIS(-1)1.000000RNQI(-1)-1.112045(0.03985)-27.9026RSSE(-1)-0.144771(0.03056)-4.73772C-0.000197Error Correction:D(RHIS)D(RNQI)D(RSSE)CointEq1-1.1210890.465546-0.166621(0.06299)(0.06533)(0.07726)-17.7978 7.12577-2.15672D(RHIS(-1)-0.059345-0.3659190.094168(0.04799)(0.04977)(0.05886)-1.23664-7.35172 1.59993D(RHIS(-2)-0.045722-0.1806740.060795(0.03023)(0.03136)(0.03708)-1.51224-5.76146 1.63944D(RNQI(-1)-0.521618-0.3327320.059792(0.05966)(0.06188)(0.07317)-8.74330-5.37726 0.81715D(RNQI(-2)-0.193842-0.1900970.065966(0.03800)(0.03942)(0.04661)-5.10055-4.82267 1.41522D(RSSE(-1)-0.1403020.071703-0.708557(0.02567)(0.02662)(0.03148)-5.46593 2.69327-22.5067D(RSSE(-2)-0.0707610.026966-0.388488(0.02541)(0.02636)(0.03117)-2.78456 1.02310-12.4646C-1.14E-05-1.19E-066.59E-06(0.00058)(0.00061)(0.00072)-0.01956-0.00197 0.00922R-squared0.5783360.4236570.379938Adj. R-squared0.5756860.4200360.376041Sum sq. resids0.4253530.4575760.639844S.E. equation0.0195400.0202670.023966F-statistic218.2734116.982597.51339Log likelihood2827.3432786.3772598.283Akaike AIC-5.025566-4.952544-4.617261Schwarz SC-4.989753-4.916730-4.581447Mean dependent-8.58E-06-3.19E-063.86E-06S.D. dependent0.0299980.0266130.030340Determinant resid covariance (dof adj.)5.67E-11Determinant resid covariance5.55E-11Log likelihood8471.907Akaike information criterion-15.05331Schwarz criterion-14.93244第六步 VECH rhis rnqi rsse rtn.matrix bekk=mgarch(rtn.matrix1,bekk(1,1) summary(bekk)Call: mgarch(formula.mean = rtn.matrix 1, formula.var = bekk(1, 1)Mean Equation: structure(.Data = rtn.matrix 1, class = formula)Conditional Variance Equation: structure(.Data = bekk(1, 1), class = formula)Conditional Distribution: gaussian-Estimated Coefficients:- Value Std.Error t value Pr(|t|) C(1) 0.00099467 0.0004234 2.34899 1.900e-002 C(2) 0.00084144 0.0004058 2.07352 3.835e-002 C(3) 0.00132681 0.0005421 2.44734 1.454e-002 A(1, 1) 0.00257109 0.0003719 6.91263 7.987e-012 A(2, 1) 0.00002574 0.0004335 0.05937 9.527e-001 A(3, 1) -0.00024515 0.0007504 -0.32669 7.440e-001 A(2, 2) 0.00090826 0.0004504 2.01644 4.399e-002 A(3, 2) -0.00049733 0.0013717 -0.36257 7.170e-001 A(3, 3) 0.00228036 0.0005070 4.49806 7.575e-006 ARCH(1; 1, 1) 0.33970572 0.0243489 13.95160 0.000e+000 ARCH(1; 2, 1) -0.04826711 0.0248394 -1.94316 5.225e-002 ARCH(1; 3, 1) 0.06403003 0.0260252 2.46031 1.403e-002 ARCH(1; 1, 2) 0.10497113 0.0239241 4.38767 1.254e-005 ARCH(1; 2, 2) 0.25802307 0.0148418 17.38493 0.000e+000 ARCH(1; 3, 2) -0.03952891 0.0234679 -1.68439 9.239e-002 ARCH(1; 1, 3) -0.08230638 0.0186652 -4.40960 1.136e-005 ARCH(1; 2, 3) 0.00800872 0.0180357 0.44405 6.571e-001 ARCH(1; 3, 3) 0.20037091 0.0208436 9.61308 0.000e+000GARCH(1; 1, 1) 0.90860992 0.0101064 89.90434 0.000e+000GARCH(1; 2, 1) -0.03328475 0.0096157 -3.46151 5.575e-004GARCH(1; 3, 1) -0.01712419 0.0107774 -1.58890 1.124e-001GARCH(1; 1, 2) 0.03790046 0.0074664 5.07616 4.509e-007GARCH(1; 2, 2) 0.97637454 0.0047567 205.26361 0.000e+000GARCH(1; 3, 2) 0.03399328 0.0046182 7.36074 3.539e-013GARCH(1; 1, 3) 0.03192512 0.0077946 4.09582 4.511e-005GARCH(1; 2, 3) 0.00259084 0.0059258 0.43722 6.620e-001GARCH(1; 3, 3) 0.97294599 0.0070750 137.51922 0.000e+000-AIC(27) = -18257.38BIC(27) = -18121.69Normality Test:- Jarque-Bera P-value Shapiro-Wilk P-value Col1 170.07 0 0.9865 4.156e-001Col1 2211.46 0 0.9636 0.000e+000Col1 94.83 0 0.9746 8.362e-011Ljung-Box test for standardized residuals:- Statistic P-value Chi2-d.f. Col1 6.869 8.661e-001 12Col1 47.309 4.121e-006 12C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论