高一数学人教版必修一函数定义域-值域-解析式的经典题目.doc_第1页
高一数学人教版必修一函数定义域-值域-解析式的经典题目.doc_第2页
高一数学人教版必修一函数定义域-值域-解析式的经典题目.doc_第3页
高一数学人教版必修一函数定义域-值域-解析式的经典题目.doc_第4页
高一数学人教版必修一函数定义域-值域-解析式的经典题目.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、设集合M=|02,N=|02,从M到N有4种对应如下图所示:其中能表示为M到N的函数关系的有 。2、求下列函数的定义域:=设函数y=f(x)的定义域为0,1,求下列函数的定义域.(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a).3、已知函数=3252,求,。4、下列函数中哪个与函数=是同一个函数?(1); (2); (3)5.给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.变式训练1:(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(2)已知f(x)满足2f(x)+f()=3x,求f(x).6 求下列函数的值域:(1)y= (2)y=x-; (3)y=.变式训练2:求下列函数的值域:(1)y=; (2)y=|x|.7若函数f(x)=x2-x+a的定义域和值域均为1,b(b1),求a、b的值.8. 判断函数f(x)=在定义域上的单调性.1. 2.解当10且20,即1且2时,根式和分式同时有意义这个函数的定义域是|1且2解:(1)03x1,故0x,y=f(3x)的定义域为0, .(2)仿(1)解得定义域为1,+).(3)由条件,y的定义域是f与定义域的交集.列出不等式组故y=f的定义域为.()由条件得讨论:当即0a时,定义域为a,1-a;当即-a0时,定义域为-a,1+a.综上所述:当0a时,定义域为a,1-a;当-a0时,定义域为-a,1+a3.解:(3)=332532=14;=3()25()2=85;=3(1)25(1)+2=32。4. 解:(1)=,0,0,定义域不同且值域不同,不是同一个函数;(2)=,定义域值域都相同,是同一个函数;(3)=|=,0;值域不同,不是同一个函数。5. 解:(1)令t=+1,t1,x=(t-1)2.则f(t)=(t-1)2+2(t-1)=t2-1,即f(x)=x2-1,x1,+).(2)设f(x)=ax2+bx+c (a0),f(x+2)=a(x+2)2+b(x+2)+c,则f(x+2)-f(x)=4ax+4a+2b=4x+2.,又f(0)=3c=3,f(x)=x2-x+3.变式训练1:解:(1)设f(x)=ax+b,则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,a=2,b=7,故f(x)=2x+7.(2)2f(x)+f()=3x, 把中的x换成,得2f()+f(x)= 2-得3f(x)=6x-,f(x)=2x-.6. 解:(判别式法)由y=得(y-1)y=1时,1.又R,必须=(1-y)2-4y(y-1)0.函数的值域为.(2)(换元法)令=t,则t0,且x=y=-(t+1)2+1(t0),y(-,.(3)由y=得,ex=ex0,即0,解得-1y1.函数的值域为y|-1y1.变式训练2解:(1)(分离常数法)y=-,0,y-.故函数的值域是y|yR,且y-.(2) y=|x|0y即函数的值域为.7. 解:f(x)=(x-1)2+a-. 其对称轴为x=1,即1,b为f(x)的单调递增区间.f(x)min=f(1)=a-=1 f(x)max=f(b)=b2-b+a=b 由解得 8. 解: 函数的定义域为x|x-1或x1,则f(x)= ,可分解成两个简单函数.f(x)= =x2-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论