全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的值域一、复习:函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定函数的表示方法解析法优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.列表法优点:不需要计算就可以直接看出与自变量的值相对应的函数值.图象法:优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.前面我们已经学习了函数定义域的求法和函数的表示法,今天我们来学习求函数值域的几种常见方法 二、讲解新课: 1直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a0时,值域为;当a0,=,当x0时,则当时,其最小值;当a0)时或最大值(a0恒成立(为什么?),函数的定义域为R,原函数可化为2y-4yx+3y-5=0,由判别式0,即16-42y(3y-5)=-8+40y0(y0),解得0y5,又y0, 0y5.注意:利用判别式法要考察两端点的值是否可以取到.3 求函数的值域; 解:令0,则,原式可化为,u0,y,函数的值域是(-,.解:令 t=4x-0 得 0x4 在此区间内 (4x-)=4 ,(4x-) =0函数的值域是 y| 0y2 四、小结 本节课学习了以下内容:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卸车工劳动合同范本
- 中外技能转让协议书
- 杭州停车场合同范本
- 校园卫生清洁协议书
- 样签约球员合同协议
- 机关印刷资料协议书
- 服装企业协议书范本
- 服务器购买合同范本
- 广东省2025年下半年佛山市事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 广东广州总工会直属事业单位(广州工程技术职业学院)引进急需专业人才易考易错模拟试题(共500题)试卷后附参考答案
- 河道整治与生态修复工程方案
- 彩妆师的培训课件
- 中国石化员工管理制度
- 2025至2030年中国烟草行业市场深度分析及发展趋向分析报告
- 2024年家政服务业职业技能大赛家庭照护赛项技术工作文件
- 2022可调节负荷并网运行与控制技术规范+第6部分-并网运行调试
- 2025年有机肥市场分析报告
- 信息安全意识培训课件
- 小米公司介绍课件
- 部编高教版2023·职业模块 中职语文 品质
- 脑挫裂伤患者护理
评论
0/150
提交评论