




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BayesianStatisticsandInferenceIII DrTeng JHarbinInstituteofTechnology Outlines ContrastbetweenMaximumLikelihoodapproachandBayesianapproachExamplesofBayesiandecisionmakingandvalueofinformation Estimationofunknownparametersinstatisticalmodels Bayesianandnon Bayesian Supposewepositaprobabilitydistributiontomodeldata Howdoweestimateitsunknownparameters Example assumedatafollowregressionmodel Wheredotheestimatesoftheregressioncoefficientscomefrom Classicalstatistics maximumlikelihoodestimation Bayesianstatistics Bayesrule EstimatingpercentageofDukieswhoplantogetadvanceddegree SupposewewanttoestimatethepercentageofDukestudentswhoplantogetanadvanceddegree MBA JD MD PhD etc Callthispercentagep Wesample20peopleatrandom and8ofthemsaytheyplantogetanadvanceddegree Whatshouldbeourestimateofp EstimatingtheaverageIQofDukeprofessors Let bethepopulationaverageIQofDukeprofs Supposewerandomlysample25DukeprofsandrecordtheirIQs Whatshouldbeourestimateof Maximumlikelihoodestimation Aprincipledapproachtoestimation Usuallywecanusesubject matterknowledgetospecifyadistributionforthedata But wedon tknowtheparametersofthatdistribution 1 Numberoutof20whowantadvanceddegree binomialdistribution 2 Profs IQs normaldistribution Maximumlikelihoodestimation Weneedtoestimatetheparametersofthedistribution Whydowecare A Sowecanmakeprobabilitystatementsaboutfutureevents B Theparametersthemselvesmaybeimportant Maximumlikelihoodestimation Themaximumlikelihoodestimateoftheunknownparameteristhevalueforwhichthedataweremostlikelytohaveoccurred Let sseehowthisworksintheexamples Advanceddegreeexample LetYbetherandomvariableforthenumberofpeopleoutof20thatplantogetanadvanceddegree Yhasabinomialdistributionwithn 20 andunknownprobabilityp Inthedata Y 8 Ifweknewp thevalueoftheprobabilitydistributionfunctionatY 8wouldbe Maximumlikelihood LabelthefunctionL p L p iscalledthelikelihoodfunctionforp ThemaximumlikelihoodestimateofpisthevalueofpthatmaximizesL p Thisisareasonableestimatebecauseitisthevalueofpforwhichtheobserveddata y 8 hadthegreatestchanceofoccurring FindingtheMLEfordegreeexample Tomaximizethelikelihoodfunction weneedtotakethederivativeofwithrespecttop setitequaltozero andfinallysolveforp Yougetthesamplepercentage EstimatingtheaverageIQofDukeprofessors Let bethepopulationaverageIQofDukeprofs Supposewerandomlysample25DukeprofsandrecordtheirIQs Whatshouldbeourestimateof ModelforProfessors IQs Themathematicalfunctionforanormalcurveforanyprof sIQ whichwelabelY is Allnormalcurveshavethisform withdifferentmeansandSDs Here we llassumethe 15 Wedon tknow whichiswhatwe reafter Modelforall25IQs Weneedthefunctionforall25IQs Assumingeachprof sIQisindependentofotherprofs IQs wehave Modelforall25IQs Withsomealgebraandsimplifications thelikelihoodfunctionis Thefunctionismaximizedwhen isthesampleaverage So weuse132 16asourestimateoftheaverageDukeprof sIQ ThissampleaverageistheMLEfor inanynormalcurve TheBayesianapproachtoestimationofmeans Let sshowhowtocombinedataandpriorinformationtoaddressthefollowingmotivatingquestion WhatisalikelyrangefortheaverageIQofDukeprofessors CombiningthepriorbeliefsandthedatausingBayesRule WecombineourpriorbeliefsandthedatausingBayesrule f data representsourposteriorbeliefsabout Formalizingamodelforpriorinformation Let sassignadistributionfor thatreflectsouraprioribeliefsaboutitslikelyrange Labelthisf Asanexample thecurvedescribingourbeliefsabout isthenormalcurvewithmean 128SD 15 Mathematicalequationfornormalcurve Wecanwritedowntheequationforthisnormalcurve Modelforthedata 25IQs Ifweknew themodelforthedata theprofessors IQs is EstimatingtheaverageIQofDukeprofessors Let bethepopulationaverageIQofDukeprofs Supposewerandomlysample25DukeprofsandrecordtheirIQs Whatshouldbeourestimateof CombiningthepriorbeliefsandthedatausingBayesRule WecombinethemodelforthepriorbeliefsandthemodelforthedatausingBayesrule f data representsourposteriorbeliefsabout Posteriordistribution Usingcalculus onecanshowthatf data isanormalcurvewithmean SD Posteriordistribution Forourdataandpriorbeliefs theposteriorbeliefs f data isanormalcurvewithmean SD Usingtheposteriordistributiontosummarizebeliefsabout Becausef data describesbeliefsabout wecanmakeprobabilitystatementsabout Forexample usinganormalcurvewithmeanequalto132 06andSDequalto2 314 Pr 130 data 813A95 posteriorintervalfor stretchesfrom127 52to136 59 Bayesianstatisticsingeneral Bayesianmethodsexistforanypopulationparameter includingpercentiles ratios etc Themethodisgeneral 1 specifyamathematicalcurvethatreflectspriorbeliefsaboutthepopulationparameter 2 specifyamathematicalcurvethatdescribesthedistributionofthedata givenavalueofthepopulationparameter 3 combinethecurvesfrom1and2mathematicallytogetposteriorbeliefsfortheparameter updatedforthedata DifferencesbetweenfrequentistandBayesian FREQUENTISTParametersarenotrandom Confidenceintervals BAYESIANParametersarerandom Posteriordistributions DecisionMakingUnderRisk Whendoingdecisionmakingunderuncertainty weassumedwehad noidea aboutwhichstateofnaturewouldoccur Indecisionmakingunderrisk weassumewehavesomeidea byexperience gutfeel experiments etc aboutthelikelihoodofeachstateofnatureoccurring TheExpectedValueApproach Givenasetofprobabilitiesforthestatesofnature p1 p2 etc foreachdecisionanexpectedpayoffcanbecalculatedby pi payoffi Ifthisisadecisionthatwillberepeatedoverandoveragain thedecisionwiththehighestexpectedpayoffshouldbetheoneselectedtomaximizetotalexpectedpayoff Butifthisisaone timedecision perhapstheriskoflosingmuchmoneymaybetoogreat thustheexpectedpayoffisjustanotherpieceofinformationtobeconsideredbythedecisionmaker ExpectedValueDecision Supposethebrokerhasofferedhisownprojectionsfortheprobabilitiesofthestatesofnature P S1 2 P S2 3 P S3 3 P S4 1 P S5 1 ExpectedValue 2 100 3 100 3 200 1 300 1 0 2 250 3 200 3 150 1 100 1 150 2 500 3 250 3 100 1 200 1 600 2 60 3 60 3 60 1 60 1 60 100 130 125 60 PerfectInformation Althoughthestatesofnatureareassumedtooccurwiththepreviousprobabilities supposeyouknew eachtimewhichstateofnaturewouldoccur i e youhadperfectinformationThenwhenyouknewS1wasgoingtooccur youwouldmakethebestdecisionforS1 Stock 500 Thiswouldhappenp1 2ofthetime WhenyouknewS2wasgoingtooccur youwouldmakethebestdecisionforS2 Stock 250 Thiswouldhappenp2 3ofthetime Andsoforth ExpectedValueofPerfectInformation EVPI Theexpectedvalueofperfectinformation EVPI isthegaininvaluefromknowingforsurewhichstateofnaturewilloccurwhen versusonlyknowingtheprobabilities Itistheupperboundonthevalueofanyadditionalinformation CalculatingtheEVPI ExpectedReturnWithPerfectInformation ERPI 2 500 3 250 3 200 1 300 1 60 271 ExpectedReturnWithNoAdditionalInformation EV Bond 130 ExpectedValueOfPerfectInformation EVPI ERPI EV Bond 271 130 141 SampleInformation Oneneverreallyhasperfectinformation butcangatheradditionalinformation getexpertadvice etc thatcanindicatewhichstateofnatureislikelytooccureachtime Thestatesofnaturestilloccur inthelongrunwithP S1 2 P S2 3 P S3 3 P S4 1 P S5 1 WeneedastrategyofwhattodogiveneachpossibilityoftheindicatorinformationWewanttoknowthevalueofthissampleinformation EVSI SampleInformationApproach Giventheoutcomeofthesampleinformation werevisetheprobabilitiesofthestatesofnatureoccurring usingBayesiananalysis Thenwerepeattheexpectedvalueapproach usingtheserevisedprobabilities toseewhichdecisionisoptimalgiveneachpossiblevalueofthesampleinformation Example SamuelmanForecast NotedeconomistMiltonSamuelmangivesaneconomicforecastindicatingeitherPositiveorNegativeeconomicgrowthinthecomingyear Usingarelativefrequencyapproachbasedonpastdataithasbeenobserved P Positive largerise 8P Negative largerise 2P Positive smallrise 7P Negative smallrise 3P Positive nochange 5P Negative nochange 5P Positive smallfall 4P Negative smallfall 6P Positive largefall 0P Negative largefall 1 BayesianProbabilitiesGivenaPositiveForecast Prob Positive P PositiveandLargeRise P PositiveandSmallRise P PositiveandNoChange P PositiveandSmallFall P PositiveandLargeFall Prob Positive P Positive LargeRise P LargeRise P Positive SmallRise P SmallRise P Positive NoChange P NoChange P Positive SmallFall P SmallFall P Positive LargeFall P LargeFall 80 20 70 30 30 40 10 0 10 56 P LargeRise Pos P Pos Lg Rise P Lg Rise P Pos P SmallRise Pos P Pos Sm Rise P Sm Rise P Pos P NoChange Pos P Pos NoChg P NoChg P Pos P SmallFall Pos P Pos Sm Fall P Sm Fall P Pos P LargeFall Pos P Pos Lg Fall P Lg Fall P Pos 80 20 56 286 70 30 56 375 50 30 56 268 40 10 56 071 0 10 56 0 50 BestDecisionWithPositiveForecast ExpectedValue 84 180 249 60 WhenSamuelmanpredicts positive ChoosetheStock BayesianProbabilitiesGivenaNegativeForecast Prob Negative P NegativeandLargeRise P NegativeandSmallRise P NegativeandNoChange P NegativeandSmallFall P NegativeandLargeFall Prob Negative P Negative LargeRise P LargeRise P Negative SmallRise P SmallRise P Negative NoChange P NoChange P Negative SmallFall P SmallFall P Negative LargeFall P LargeFall 20 20 30 30 30 60 10 1 10 44 P LargeRise Neg P Neg Lg Rise P Lg Rise P Neg P SmallRise Neg P Neg Sm Rise P Sm Rise P Neg P NoChange Neg P Neg NoChg P NoChg P Neg P SmallFall Neg P Neg Sm Fall P Sm Fall P Neg P LargeFall Neg P Neg Lg Fall P Lg Fall P Neg 20 20 44 091 30 30 44 205 50 30 44 341 60 10 44 136 1 10 44 227 50 BestDecisionWithNegativeForecast ExpectedValue 120 67 33 60 WhenSamuelmanpredicts negative ChooseGold StrategyWithSampleInformation IftheSamuelmanReportisPositive Choosethestock IftheSamuelmanReportisNegative Choosethegold ExpectedValueofSampleInformation EVSI Recall P Positive 56P Negative 44Whenpositive chooseStockwithEV 249Whennegative chooseGoldwithEV 120 ExpectedReturnWithSampleInformation ERSI 56 249 44 120 192 50 ExpectedReturnWithNoAdditionalInformation EV Bond 130 ExpectedValueOfSampleInformation EVSI ERSI EV Bond 192 50 130 62 50 Efficiency Efficiencyisameasureofthevalueofthesampleinformationascomparedtothetheoreticalperfectinformation Itisanumberbetween0and1givenby Efficiency EVSI EVPIFortheJonesInvestmentModel Efficiency 62 50 141 44 BayesianInflationaryBelief Therearetwoplayers thegovernmentandtherepresent
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030碳纤维复合材料应用拓展分析及成本下降空间与产业基金布局研究
- 2025嘉兴海宁市袁花镇中心幼儿园公开招聘劳动合同制教职工5人考试参考试题及答案解析
- 2025年合肥长丰县阿奎利亚学校教育集团临聘教师公开招聘43名备考考试试题及答案解析
- 2025年合肥职业技术学院高层次(博士)人才招聘20人备考考试题库附答案解析
- 2025年合肥市巢湖路小学教师招聘备考考试试题及答案解析
- 宠物医疗行业2025年市场规模预测与竞争格局研究报告
- 2025贵州遵义湄潭县茶城小学见习教师招聘5人备考考试题库附答案解析
- 新能源安全管理2025年新技术应用与产业生态构建报告
- 长尾词引领下2025年海洋能发电技术升级助力沿海城市能源报告
- 开展护理级别
- 西门子燃气轮机介绍课件
- 中国园林史全
- 社会调查研究方法-课件
- 雕塑基础教学课件
- 生理学(全套课件)
- 汉书-张骞传课件
- 民法典侵权责任编课件
- 市政道路养护工程监理工作
- 练平舌音和翘舌音的绕口令
- 校企合作讲座精品PPT课件
- 煤矿电缆与电缆敷设标准
评论
0/150
提交评论