


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八上13 1.1轴对称1理解轴对称图形和两个图形关于某直线对称的概念;了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点;掌握线段垂直平分线的概念2理解和掌握轴对称的性质3经历丰富材料的学习过程,发展对图形的观察、分析、判断能力,体验数学与生活的联系、感受图形美与生活美重点:轴对称图形和两个图形关于某直线对称的概念难点:轴对称图形和两个图形关于某直线对称的区别和联系一、作品展示1教师播放视频“千手观音”,让学生初步感受对称美。2让部分学生展示课前的剪纸作品3小组活动:(1)在窗花(或其它图案)的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”2在课件中展示建筑物,脸谱艺术,剪纸艺术等图片,进一步分析轴对称图形的特点,以及对称轴的位置3学生举例,试举几个在现实生活中你所见到的轴对称例子4概念应用:(1)教材第60页练习第1题(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1观察教材中的图13.13,思考:图中的每对图形有什么共同的特点?2两个图形成轴对称的定义观察右图:把ABC沿直线l对折后能与ABC重合,则称ABC与ABC关于直线l对称,简称“轴对称”,点A与点A对应,点B与B对应,点C与C对应,称为对称点,直线l叫做对称轴3举例:你能举出一些生活中两个图形成轴对称的例子吗?4讨论:轴对称图形和两个图形成轴对称的区别(三)轴对称的性质观察教材中图13.14,线段AA与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PAPA,MPAMPA90.类似的,点B和点B,点C和点C是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书对称轴经过对称点所连线段的中点,并且垂直于这条线段在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线三、归纳小结:主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点,轴对称的性质;(2)找轴对称图形的对称轴四、布置作业:教材习题13.1第1,2,3题数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“折叠”与“完全重
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训沟通能力课程
- 危险的工地课件
- 科学技术试题库及答案
- 交通银行2025白山市秋招笔试价值观测评题专练及答案
- 农业银行2025海南藏族自治州秋招无领导小组面试案例题库
- 2025年3D打印技术的个性化医疗器械
- 农业银行2025九江市秋招半结构化面试题库及参考答案
- 邮储银行2025长沙市笔试英文行测高频题含答案
- 邮储银行2025达州市秋招无领导小组面试案例题库
- 2025行业未来十年发展趋势预测
- 中国传统故事英文九色鹿二篇
- 突发事件处理记录表(标准范本)
- 房产归属协议书范本
- 学生休学申请表(新)
- 350吨履带吊地基承载力验算
- 影视艺术导论教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- TSG-R0005-2022《移动式压力容器安全技术监察规程》(2022版)
- 2020 ACLS-PC-SA课前自我测试试题及答案
- 第1章 税务会计与纳税筹划概述
- GB∕T 41181-2021 坐姿椅
- 傅里叶级数及其应用论文
评论
0/150
提交评论