神经网络工具箱简介.doc_第1页
神经网络工具箱简介.doc_第2页
神经网络工具箱简介.doc_第3页
神经网络工具箱简介.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第9页静态网络中的同步输入仿真net=newlin(-1 1;-1 1,1);w=1,2,b=0;net.IW1,1=1 2;net.b1=0;p=1 2 2 3;2 1 3 1;A=sim(net,p)成功动态网络中的异步输入仿真net=newlin(-1 1,1,0 1);net.biasConnect=0;W=1,2;net.IW1,1=1 2;P(1)=1,P(2)=2,P(3)=3,P(4)=4;P=1 2 3 4;A=sim(net,P)第十页动态网络中的同步输入仿真net=newlin(-1 1,1,0 1);net.biasConnect=0;W=1,2;net.IW1,1=1 2;P(1)=1,P(2)=2,P(3)=3,P(4)=4;P=1 2 3 4;A=sim(net,P)P=1 2 3 4;A=sim(net,P)成功同时模拟两组网络响应P=1 4 2 3 3 2 4 1;A=sim(net,P)不成功5训练方式批处理方式net=newlin(-1 1;-1 1,1,0,0); net.IW1,1=0 0; net.b1=0; P=1;2 2;1 2;3 3;1; T=4 5 7 7;net,a,e pf=adapt(net,P,T)成功静态网络中的增加方式:net=newlin(-1 1;-1 1,1,0,0); net.IW1,1=0 0; net.b1=0; P=1;2 2;1 2;3 3;1; T=4 5 7 7;net.inputWeights1,1.learnParam.lr=0.1; net.biases1,1.learnParam.lr=0.1; net,a,e,pf=adapt(net,P,T);第12页动态网络中的增加方式:net=newlin(-1 1,1,0 1,0.1);net.IW1,1=0 0;net.biasConnect=0;Pi=1;P=2 3 4;T=3 5 7;net,a,e,pf=adapt(net,P,T,Pi)半成功,数据不是完全对应第13页批处理方式静态网络中的批处理方式用adapt函数的批处理方式调整net=newlin(-1 1;-1 1,1,0,0.1);net.IW1,1=0 0; net.b1=0;P=1 2 2 3;2 1 3 1;T=4 5 7 7;net,a,e,pf=adapt(net,P,T) net.IW1,1 net.b1成功用train出发,用于批处理方式。net=newlin(-1 1;-1 1,1,0,0.1);net.IW1,1=0 0;net.b1=0;P=1 2 2 3;2 1 3 1;T=4 5 7 7;net.inputWeights1,1.learnParam.lr=0.1;net.biases1.learnParam.lr=0.1;net.trainParam.epochs=1;net=train(net,P,T);net.IW1,1net.b1动态网络中的增加方式net=newlin(-1 1,1,0 1,0.02); net.IW1,1=0 0; net.biasConnect=0; net.trainParam.epochs=1; Pi=1; P=2 3 4; T=3 5 6; net=train(net,P,T,Pi);net.IW1,1第15页第三章 返乡传播网络(BP网络)tansig(deriv)成功网络构建和初始化net=newff(-1 2;0 5,3,1,tansig,purelin,traingd);net=init(net);net.layers1.initFcn=initwb;net.inputWeights1,1.initFcn=rands;net.biases1,1.initFcn=rands;net.biases2,1.initFcn=rands;net=init(net);不成功p=1;2;a=sim(net,p)不完全成功,数据不对p=1 3 2;2 4 1;a=sim(net,p)不完全成功增加模式训练法net.biases1,1.learnFcn=learngd; net.biases2,1.learnFcn=learngd; net.layerWeights2,1.learnFcn=learngd; net.inputWeights1,1.learnFcn=learngd; net.layerWeights2,1.learnParam.lr=0.2; net.adaptParam.passes=200; P=-1 -1 2 2;0 5 0 5; t=-1 -1 1 1; p=num2cell(p,1); t=num2cell(t,1); net,a,e=adapt(net,p,t);a=sim(net,p)很不成功带动力的梯度下降法net.biases1,1.learnFcn=learngdm; net.biases2,1.learnFcn=learngdm; net.layerW

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论