




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。正弦定理和余弦定理1 正弦定理:2R,其中R是三角形外接圆的半径由正弦定理可以变形:(1)abcsin_Asin_Bsin_C;(2)a2Rsin_A,b2Rsin_B,c2Rsin_C;(3)sin A,sin B,sin C等形式,解决不同的三角形问题2 余弦定理:a2b2c22bccos_A,b2a2c22accos_B,c2a2b22abcos_C余弦定理可以变形:cos A,cos B,cos C.3 SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R、r.4 在ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式absin Absin Aab解的个数一解两解一解一解难点正本疑点清源1在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在ABC中,ABabsin Asin B;tanA+tanB+tanC=tanAtanBtanC;在锐角三角形中,cosAsinB,cosAsinC2 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换1 在ABC中,若A60,a,则_.2 (2012福建)已知ABC的三边长成公比为的等比数列,则其最大角的余弦值为_3 (2012重庆)设ABC的内角A,B,C的对边分别为a,b,c,且cos A,cos B,b3,则c_.4 (2011课标全国)在ABC中,B60,AC,则AB2BC的最大值为_5 已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc16,则三角形的面积为()A2 B8 C. D.题型一利用正弦定理解三角形例1在ABC中,a,b,B45.求角A、C和边c. 已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则角A的大小为_题型二利用余弦定理求解三角形例2在ABC中,a、b、c分别是角A、B、C的对边,且.(1)求角B的大小;(2)若b,ac4,求ABC的面积 已知A,B,C为ABC的三个内角,其所对的边分别为a,b,c,且2cos2cos A0.(1)求角A的值;(2)若a2,bc4,求ABC的面积题型三正弦定理、余弦定理的综合应用例3(2012课标全国)已知a,b,c分别为ABC三个内角A,B,C的对边,acos Casin Cbc0.(1)求A;(2)若a2,ABC的面积为,求b,c.1.在ABC中,内角A,B,C所对的边长分别是a,b,c.(1)若c2,C,且ABC的面积为,求a,b的值;(2)若sin Csin(BA)sin 2A,试判断ABC的形状解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A,A,ABC为直角三角形;当sin Asin B0时,得sin Bsin A,由正弦定理得ab,即ABC为等腰三角形ABC为等腰三角形或直角三角形2.(2011浙江)在ABC中,角A,B,C所对的边分别为a,b,c.已知sin Asin Cpsin B (pR),且acb2.(1)当p,b1时,求a,c的值;(2)若角B为锐角,求p的取值范围解(1)由题设并由正弦定理,得解得或(2)由余弦定理,b2a2c22accos B(ac)22ac2accos Bp2b2b2b2cos B,即p2cos B.因为0cos B0,所以pb,A60或A120.当A60时,C180456075,c;当A120时,C1804512015,c.变式训练1例2解(1)由余弦定理知:cos B,cos C.将上式代入得:,整理得:a2c2b2ac.cos B.B为三角形的内角,B.(2)将b,ac4,B代入b2a2c22accos B,得b2(ac)22ac2accos B,13162ac,ac3.SABCacsin B.变式训练2解(1)cos ,cos A2cos21,sin A.又3,bccos A3,bc5.SABCbcsin A52.(2)由(1)知,bc5,又bc6,根据余弦定理得a2b2c22bccos A(bc)22bc2bccos A36101020,a2.例3解(1)由题设并由正弦定理,得解得或(2)由余弦定理,b2a2c22accos B(ac)22ac2accos Bp2b2b2b2cos B,即p2cos B.因为0cos B0,所以p.变式训练3解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A0,从而有sin A,A60或120,A是锐角,A60.(2)10bcsin 60,bc40,又72b2c22bccos 60,b2c289.8解sin B4cos Asin C,由正弦定理,得4cos A,b4ccos A,由余弦定理得b4c,b22(b2c2a2),b22(b22b),b4.B组1D2.D3A460正三角形 546.7解(1)由已知,根据正弦定理得2a2(2bc)b(2cb)c,即a2b2c2bc.由余弦定理得a2b2c22bccos A,故cos A,又0A180,A120.(2)由得sin2Asin2Bsin2Csin Bsin C.(sin Bsin C)2sin Bsin C,又sin Bsin C1,sin Bsin C.解联立的方程组,得sin Bsin C.因为0B60,0C60,故BC.所以ABC是等腰的钝角三角形8解(1)BCA,即,由4sin2cos 2A,得4cos2cos 2A,即2(1cos A)(2cos2A1),整理得4cos2A4cos A10,即(2c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西电集团医院招聘(57人)考前自测高频考点模拟试题完整参考答案详解
- 2025广东广州工程技术职业学院第一批招聘一般岗位7人模拟试卷(含答案详解)
- 2025内蒙古通辽市招募企业储备人才37人模拟试卷带答案详解
- 2025年上海奉贤区教育系统事业单位编外用工招聘143名模拟试卷附答案详解(突破训练)
- 2025年灯具配附件:触点项目合作计划书
- 小学安全员培训课件
- 小学安全全员培训方案课件
- 小学安全专题培训心得课件
- Human-VEGFC-mRNA-生命科学试剂-MCE
- HIV-1-protease-IN-15-生命科学试剂-MCE
- 贵州省2025年高职院校分类考试招生中职生文化综合英语试题答案
- 配餐公司库房管理制度
- 2025年人保车险考试题及答案
- 酒店宴会部前台培训
- 统编版小升初语文《记叙文阅读》教案
- 2025年云南省职教高考电工技术类《电工基础理论知识》考试复习题库(含答案)
- 《餐饮点菜》课件
- 公司财务知到智慧树章节测试课后答案2024年秋北京第二外国语学院
- 工厂交叉作业安全管理协议书(2篇)
- 中考英语完型填空常用短语
- 宣传物料技术服务方案设计
评论
0/150
提交评论