1-15.极限的应用---函数的渐近线.doc_第1页
1-15.极限的应用---函数的渐近线.doc_第2页
1-15.极限的应用---函数的渐近线.doc_第3页
1-15.极限的应用---函数的渐近线.doc_第4页
1-15.极限的应用---函数的渐近线.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

模块基本信息一级模块名称函数与极限二级模块名称应用模块三级模块名称极限的应用-函数的渐近线模块编号1-15先行知识无穷小与无穷大模块编号1-10知识内容教学要求掌握程度1、函数渐近线的建模过程;1、了解建模步骤,理解渐近线的建模过程;简单应用2、渐近线的分类;2、熟悉渐近线的类别及其特征;3、渐近线的求解方法。3、掌握渐近线的求解。能力目标1、培养学生应用数学分析问题和解决问题的能力2、巩固运算能力时间分配30分钟编撰秦小娜校对方玲玲审核危子青修订熊文婷二审危子青一、正文编写思路及特点:思路:预备知识三类渐近线渐近线的定义、建模过程及求法案例.学生对渐近线从不了解到掌握求解方法,是一个从无到有的过程,充分融入了数学建模的思想,既能让学生了解简单的建模,又能巩固对极限的运算能力.特点:1、在构建渐近线的过程中,让学生了解简单的数学建模,从而培养学生分析问题、解决问题的能力; 2、在学生掌握渐近线的求解方法时巩固运算能力。二、授课部分(一) 预备知识1、在自变量的某种趋势下,以零为极限的变量称为无穷小量,简称无穷小.2、在自变量的某种变化趋势下,若变量的绝对值无限增大,则称变量为无穷大量.(二)三类渐近线 图1(函数) 图2(双曲线)分析:1. 图1中,直线y=0(即x轴)是曲线的一条渐近线,呈水平状;2. 图1中,直线x=0(即y轴)也是曲线的一条渐近线,呈垂直状;3. 图2中,和为双曲线的两条渐进线,呈倾斜状.小结: 1.直线y=0是曲线的水平渐近线; 2.直线x=0是曲线的垂直渐近线; 3.和为双曲线的两条斜渐进线.(三)渐近线的定义、建模过程及求法 1、定义 如果曲线上的动点沿着曲线远离原点时,该点与某定直线的距离趋于零,则称此定直线为曲线的渐近线. (选讲) 2、曲线的渐近线的构建过程(供老师参考) 第一步:模型假设、问题分析. 斜率k存在的情况. 假设是曲线y=f(x)当时的渐近线,等价于曲线上的点P(x,f(x))到直线的距离趋于零,即 . 斜率k不存在的情况.即当时,曲线y=f(x)的取值会趋于,即 . 第二步:模型建立. 斜率k存在的情况. 由于 等价于 ,从而有 , 即 , . 斜率k不存在的情况. 等价于 ,从而有 为渐近线. 3、渐近线的求法 水平渐近线(即平行于x轴的渐近线) 如果或,则直线是曲线y=f(x)的水平渐近线. 垂直渐近线(即垂直于x轴的渐近线) 如果或,则直线是曲线y=f(x)的垂直渐近线. 斜渐近线 如果满足下列两个条件: 或(k不为无穷大) 或则曲线y=f(x)有一条斜渐近线. 总结:在求曲线的渐近线时,为了避免漏掉渐近线,应从和(和)两种情况考虑极限.(四)案例 例1. 求的渐近线. 解: 为函数曲线的水平渐近线. 例2. 求的渐近线. 解:, 和为函数曲线的两条垂直渐近线. 例3. 求的渐近线. 解: 为函数曲线的垂直渐近线. 又, 为曲线的斜渐近线.三、能力反馈部分1、(考查学生对渐近线分类及特征的掌握程度) 和为曲线的_渐近线; 为曲线的_渐近线; 为双曲线的_渐近线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论