




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2006年普通高等学校招生全国统一考试(安徽卷)理科数学本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至2页。第卷3至4页。全卷满分150分,考试时间120分钟。考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。2答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。3答第卷时,必须用0.5毫米墨水签字笔在答题卡上书写。在试题卷上作答无效。4考试结束,监考人员将试题卷和答题卡一并收回。参考公式:如果时间A、B互斥,那么如果时间A、B相互独立,那么如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率球的表面积公式,其中R表示球的半径球的体积公式,其中R表示球的半径第卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)复数等于( )A B C D解:故选A(2)设集合,则等于( )A B C D解:,所以,故选B。(3)若抛物线的焦点与椭圆的右焦点重合,则的值为( )A B C D解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D。(4)设,已知命题;命题,则是成立的( )A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件解:命题是命题等号成立的条件,故选B。(5)函数 的反函数是( )A B C D解:有关分段函数的反函数的求法,选C。(6)将函数的图象按向量平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A BC D解:将函数的图象按向量平移,平移后的图象所对应的解析式为,由图象知,所以,因此选C。(7)若曲线的一条切线与直线垂直,则的方程为( )A B C D解:与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为,故选A(8)设,对于函数,下列结论正确的是( )A有最大值而无最小值 B有最小值而无最大值C有最大值且有最小值 D既无最大值又无最小值解:令,则函数的值域为函数的值域,又,所以是一个减函减,故选B。(9)表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为 A B C D解:此正八面体是每个面的边长均为的正三角形,所以由知,则此球的直径为,故选A。(10)如果实数满足条件 ,那么的最大值为( )A B C D解:当直线过点(0,-1)时,最大,故选B。(11)如果的三个内角的余弦值分别等于的三个内角的正弦值,则( )A和都是锐角三角形 B和都是钝角三角形C是钝角三角形,是锐角三角形D是锐角三角形,是钝角三角形解:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,所以是钝角三角形。故选D。(12)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( ) A B C D解:在正方体上任选3个顶点连成三角形可得个三角形,要得直角非等腰三角形,则每个顶点上可得三个(即正方体的一边与过此点的一条面对角线),共有24个,得,所以选C。2006年普通高等学校招生全国统一考试(安徽卷)理科数学第卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。(13)设常数,展开式中的系数为,则_。解:,由,所以,所以为1。(14)在中,M为BC的中点,则_。(用表示)解:,所以。(15)函数对于任意实数满足条件,若则_。ABCDA1B1C1D1第16题图A1解:由得,所以,则。(16)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:3; 4; 5; 6; 7以上结论正确的为_。(写出所有正确结论的编号)解:如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选。三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤(17)(本大题满分12分)已知()求的值;()求的值。解:()由得,即,又,所以为所求。()=。(18)(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。()写出的分布列;(以列表的形式给出结论,不必写计算过程)()求的数学期望。(要求写出计算过程或说明道理)解:()123456789PABCDEFOP第19题图H()(19)(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O。()证明;()求面与面所成二面角的大小。解:()在正六边形ABCDEF中,为等腰三角形,P在平面ABC内的射影为O,PO平面ABF,AO为PA在平面ABF内的射影;O为BF中点,AOBF,PABF。()PO平面ABF,平面PBF平面ABC;而O为BF中点,ABCDEF是正六边形 ,A、O、D共线,且直线ADBF,则AD平面PBF;又正六边形ABCDEF的边长为1,。过O在平面POB内作OHPB于H,连AH、DH,则AHPB,DHPB,所以为所求二面角平面角。在中,OH=,=。在中,;而()以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),设平面PAB的法向量为,则,得,;设平面PDB的法向量为,则,得,;(20)(本大题满分12分)已知函数在R上有定义,对任何实数和任何实数,都有()证明;()证明 其中和均为常数;()当()中的时,设,讨论在内的单调性并求极值。证明()令,则,。()令,则。假设时,则,而,即成立。令,假设时,则,而,即成立。成立。()当时,令,得;当时,是单调递减函数;当时,是单调递增函数;所以当时,函数在内取得极小值,极小值为(21)(本大题满分12分)数列的前项和为,已知()写出与的递推关系式,并求关于的表达式;()设,求数列的前项和。解:由得:,即,所以,对成立。由,相加得:,又,所以,当时,也成立。()由,得。而,(22)(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,。OFxyPM第22题图H()写出双曲线C的离心率与的关系式;()当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。解:四边形是,作双曲线的右准线交PM于H,则,又,。()当时,双曲线为四边形是菱形,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:,又,由得:,解得,则,所以为所求。2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页。全卷满分150分,考试时间120分钟。考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。2. 答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动、用橡皮擦干净后,再选涂其他答案标号。3. 答第卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。4. 考试结束,监考员将试题卷和答题卡一并收回。参考公式:如果事件A、B互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S=4r2如果事件A、B相互独立,那么 其中R表示球的半径P(AB)=P(A)+P(B) 球的体积公式1+2+n V=12+22+n2= 其中R表示球的半径13+23+n3=第卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)下列函数中,反函数是其自身的函数为(A) (B) (C) (D)(2)设l,m,n均为直线,其中m,n在平面内,“l”是lm且“ln”的(A)充分不必要条件 (B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件(3)若对任意R,不等式ax恒成立,则实数a的取值范围是(A)a-1 (B)1 (C) 1 (D)a1 (4)若a为实数,-I,则a等于(A)(B)-(C)2(D)-2(5)若,则的元素个数为(A)0(B)1(C)2(D)3(6)函数的图象为C图象关于直线对称;函灶在区间内是增函数;由的图象向右平移个单位长度可以得到图象. (A)0(B)1(C)2(D)3(7)如果点在平面区域上,点在曲线上,那么 的最小值为 (A)(B)(C)(D)(8)半径为1的球面上的四点是正四面体的顶点,则与两点间的球面距离为 (A)(B)(C)(D)(9)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为 (A)(B)(C)(D)(10)以表示标准正态总体在区间()内取值的概率,若随机变量服从正态分布,则概率等于 (A)-(B) (C)(D)(11)定义在R上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为 (A)0(B)1(C)3(D)5绝密启用前2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)第卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡上书写作答,在试题卷上书写作答无效.二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(12)若(2x3+)a的展开式中含有常数项,则最小的正整数n等于 .(13)在四面体O-ABC中,为BC的中点,E为AD的中点,则= (用a,b,c表示).(14)如图,抛物线y=-x2+1与x轴的正半轴交于点A,将线段OA的n等分点从左至右依次记为P1,P2,Pn-1,过这些分点分别作x轴的垂线,与抛物线的交点依次为Q1,Q2,Qn-1,从而得到n-1个直角三角形Q1OP1, Q2P1P2, Qn-1Pn-1Pn-1,当n时,这些三角形的面积之和的极限为 .(15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号).矩形;不是矩形的平行四边形;有三个面为等腰直角三角形,有一个面为等边三角形的四面体;每个面都是等边三角形的四面体;每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤.(16)(本小题满分12分)已知0a的最小正周期,求.(17) (本小题满分14分)如图,在六面体ABCDA1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1平面A1B1C1D1,DD1平面ABCD,DD12.()求证:A1C1与AC共面,B1D1与BD共面;()求证:平面A1ACC1平面B1BDD1;()求二面角ABB1C的大小(用反三角函数值圾示).(18) (本小题满分14分)设a0,f (x)=x1ln2 x2a ln x(x0).()令F(x)xf(x),讨论F(x)在(0.)内的单调性并求极值;()求证:当x1时,恒有xln2x2a ln x1.(19) (本小题满分12分)如图,曲线G的方程为y2=20(y0).以原点为圆心,以t(t 0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B.直线AB与x轴相交于点C.()求点A的横坐标a与点C的横坐标c的关系式;()设曲线G上点D的横坐标为a2,求证:直线CD的斜率为定值.(20) (本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以表示笼内还剩下的果蝇的只数.()写出的分布列(不要求写出计算过程);()求数学期望E;()求概率P(E).(21) (本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d0),因此,历年所交纳的储务金数目a1,a2,是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r0),那么,在第n年末,第一年所交纳的储备金就变为a1(1r)a1,第二年所交纳的储备金就变为a2(1r)a2,以Tn表示到第n年末所累计的储备金总额.()写出Tn与Tn1(n2)的递推关系式;()求证:TnAnBn,其中An是一个等比数列,Bn是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分55分1234567891011二、填空题:本题考查基本知识和基本运算每小题4分,满分16分127131415 三、解答题16本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力本小题满分12分解:因为为的最小正周期,故因,又故由于,所以17本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力本小题满分14分解法1(向量法):以为原点,以所在直线分别为轴,轴,轴建立空间直角坐标系如图,则有ABCD()证明:与平行,与平行,于是与共面,与共面()证明:,与是平面内的两条相交直线平面又平面过平面平面()解:设为平面的法向量,于是,取,则,设为平面的法向量,于是,取,则,二面角的大小为解法2(综合法):()证明:平面,平面,平面平面ABCD于是,设分别为的中点,连结,有,于是由,得,故,与共面过点作平面于点,则,连结,于是,所以点在上,故与共面()证明:平面,又(正方形的对角线互相垂直),与是平面内的两条相交直线,平面又平面过,平面平面()解:直线是直线在平面上的射影,根据三垂线定理,有过点在平面内作于,连结,则平面,于是,所以,是二面角的一个平面角根据勾股定理,有,有,二面角的大小为18本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力本小题满分14分()解:根据求导法则有,故,于是,列表如下:20极小值故知在内是减函数,在内是增函数,所以,在处取得极小值()证明:由知,的极小值于是由上表知,对一切,恒有从而当时,恒有,故在内单调增加所以当时,即故当时,恒有19本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力本小题满分12分xyBAOaD解:()由题意知,因为,所以由于,故有(1)由点的坐标知,直线的方程为又因点在直线上,故有,将(1)代入上式,得,解得()因为,所以直线的斜率为所以直线的斜率为定值20本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力本小题满分13分解:()的分布列为:0123456()数学期望为()所求的概率为21本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力本小题满分14分解:()我们有(),对反复使用上述关系式,得 ,在式两端同乘,得,得即如果记,则其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页全卷满分150分,考试时间120分钟考生注意事项:1 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致2 答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号3 答第卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写在试题卷上作答无效4 考试结束,监考员将试题卷和答题卡一并收回参考公式:如果事件互斥,那么球的表面积公式 其中表示球的半径如果事件相互独立,那么球的体积公式 如果随机变量 其中表示球的半径 第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的(1)复数( )A2B2 CD(2)集合,则下列结论正确的是( ) A B CD(3)在平行四边形ABCD中,AC为一条对角线,若,,则( )A(2,4)B(3,5)C(3,5)D(2,4) (4)已知是两条不同直线,是三个不同平面,下列命题中正确的是( )ABC D(5)将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )ABCD(6)设则中奇数的个数为( )A2B3C4D5(7)是方程至少有一个负数根的( )A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件(8)若过点的直线与曲线有公共点,则直线的斜率的取值范围为( )ABCD(9)在同一平面直角坐标系中,函数的图象与的图象关于直线对称。而函数的图象与的图象关于轴对称,若,则的值是( ) A B CD (10)设两个正态分布和的密度函数图像如图所示。则有( )ABCD(11)若函数分别是上的奇函数、偶函数,且满足,则有( )ABCD(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A B CD 2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第卷(非选择题 共90分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置(13)函数的定义域为 (14)在数列在中,,其中为常数,则的值是 (15)若为不等式组表示的平面区域,则当从2连续变化到1时,动直线 扫过中的那部分区域的面积为 (16)已知在同一个球面上,若,则两点间的球面距离是 三、解答题:本大题共6小题,共74分解答应写出文字说明、证明过程或演算步骤(17)(本小题满分12分)已知函数()求函数的最小正周期和图象的对称轴方程()求函数在区间上的值域(18)(本小题满分12分如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点()证明:直线;()求异面直线AB与MD所成角的大小; ()求点B到平面OCD的距离。(19)(本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。()求n,p的值并写出的分布列;()若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率(20)(本小题满分12分)设函数()求函数的单调区间; ()已知对任意成立,求实数的取值范围。(21)(本小题满分13分)设数列满足为实数()证明:对任意成立的充分必要条件是;()设,证明:;()设,证明:(22)(本小题满分13分)设椭圆过点,且着焦点为()求椭圆的方程;()当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上2008年高考安徽理科数学试题参考答案一. 选择题1A 2D 3B 4D 5C 6A 7B 8C 9B 10A 11D 12C二. 13: 14: 1 15: 16: (1)复数( )A2B2 CD 解:,选A。(2)集合,则下列结论正确的是( ) A B CD解: ,又 ,选D。(3)在平行四边形ABCD中,AC为一条对角线,若,,则( )A(2,4)B(3,5)C(3,5)D(2,4)解:因为,选B。(4)已知是因为,选B。两条不同直线,是三个不同平面,下列命题中正确的是( )ABC D解: 均为直线,其中平行,可以相交也可以异面,故A不正确;m,n则同垂直于一个平面的两条直线平行;选D。(5)将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )ABCD解:设平移向量,则函数按向量平移后的表达式为,因为图象关于点中心对称,故代入得: ,k=0得:,选C。本题也可以从选择支出发,逐个排除也可。(6)设则中奇数的个数为( )A2B3C4D5解:由题知,逐个验证知,其它为偶数,选A。(7)是方程至少有一个负数根的( )A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件解:当,得a1时方程有根。ab0)上,x0=, y0=. 直线与直线: 垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.()证明:点P是椭圆 与直线的唯一交点;()证明:tan,tan,tan构成等比数列。(21)(本小题满分13分)首项为正数的数列满足.()证明:若 为奇数,则对一切 , 都是奇数;()若对一切,都有,求的取值范围。W数学(理科)试题 第4页(共4页)w.w.w.k.s.5.u.c.o.m 绝密启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。全卷满分150分钟,考试时间120分钟。考生注意事项:1答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。2答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。3答第卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。4考试结束,务必将试题卷和答题卡一并上交。参考公式:如果事件与互斥,那么 如果与是两个任意事件,那么如果事件与相互独立,那么 第卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。1、是虚数单位, A、B、C、D、1.B【解析】,选B.【规律总结】为分式形式的复数问题,化简时通常分子与分母同时乘以分母的共轭复数,然后利用复数的代数运算,结合得结论.2、若集合,则A、 B、 C、 D、2.A5、双曲线方程为,则它的右焦点坐标为A、B、C、D、5.C【解析】双曲线的,所以右焦点为.【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为或,从而得出错误结论.6、设,二次函数的图象可能是6.D【解析】当时,、同号,(C)(D)两图中,故,选项(D)符合.【方法技巧】根据二次函数图像开口向上或向下,分或两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.7、设曲线的参数方程为(为参数),直线的方程为,则曲线上到直线距离为的点的个数为A、1B、2C、3D、47.B【解析】化曲线的参数方程为普通方程:,圆心到直线的距离,直线和圆相交,过圆心和平行的直线和圆的2个交点符合要求,又,在直线的另外一侧没有圆上的点符合要求,所以选B.【方法总结】解决这类问题首先把曲线的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线上到直线距离为,然后再判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台入侵检测系统智能化检测与响应优化
- 2025年文化娱乐产业消费者行为分析:市场细分与竞争策略001
- 2026届内蒙古喀喇沁旗锦山蒙古族中学化学高二上期中学业水平测试模拟试题含解析
- 现代诗歌批评性鉴赏课件
- 2025年高中地理教师资格证考试教育评价方法押题真题试卷
- 2026届河北省唐山市重点初中高二化学第一学期期末质量跟踪监视模拟试题含答案
- 2026届四川省广安遂宁资阳等六市化学高二上期末教学质量检测试题含答案
- 2026届陕西省延安市吴起县高级中学化学高三上期末综合测试试题含解析
- 眼睛科普问答题目及答案
- 2026届嘉峪关市重点中学化学高一第一学期期中学业水平测试模拟试题含解析
- 急性st段抬高型心肌梗死
- 幼儿文学课件完整版
- DB6101T3128-2022养老服务规范 助餐服务
- GB/T 21709.8-2008针灸技术操作规范第8部分:皮内针
- 资本论第三卷讲义课件
- 离心式压缩机试车记录
- 穴位敷贴中医护理技术操作规范
- 冷却塔投标文件
- 地下室开槽引流方案
- 青年教师专业成长课题结题报告
- 农村公路安全生命防护工程施工方案
评论
0/150
提交评论