




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。T检验法T检验,亦称student t检验(Students t test),主要用于样本含量较小(例如n30),总体标准差未知的正态分布资料。T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家。戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。T检验的适用条件:正态分布资料单个样本的t检验目的:比较样本均数 所代表的未知总体均数和已知总体均数0。计算公式:t统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。编辑单个样本的t检验实例分析1例1 难产儿出生体重 一般婴儿出生体重0 = 3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准H0: = 0 (难产儿与一般婴儿出生体重的总均数相等;H0无效假设,null hypothesis)(难产儿与一般婴儿出生体重的总均数不等;H1备择假设,alternative hypothesis,)双侧检验,检验水准: = 0.05 2.计算检验统计量3.查相应界值表,确定P值,下结论查附表1: t0.05 / 2.34 = 2.032,t = 1.77,t 0.05,按 = 0.05水准,不拒绝H0,两者的差别无统计学意义,尚不能认为难产儿平均出生体重与一般婴儿的出生体重不同编辑配对样本t检验配对设计:将受试对象的某些重要特征按相近的原则配成对子,目的是消除混杂因素的影响,一对观察对象之间除了处理因素/研究因素之外,其它因素基本齐同,每对中的两个个体随机给予两种处理。 两种同质对象分别接受两种不同的处理,如性别、年龄、体重、病情程度相同配成对。 同一受试对象或同一样本的两个部分,分别接受两种不同的处理 自身对比。即同一受试对象处理前后的结果进行比较。目的:判断不同的处理是否有差别计算公式及意义:t 统计量:自由度:v=对子数-1适用条件:配对资料编辑T检验的步骤21、建立虚无假设H0:1 = 2,即先假定两个总体平均数之间没有显著差异;2、计算统计量t值,对于不同类型的问题选用不同的统计量计算方法;1)如果要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量t值的计算公式为:2)如果要评断两组样本平均数之间的差异程度,其统计量t值的计算公式为:3、根据自由度df=n-1,查t值表,找出规定的t理论值并进行比较。理论值差异的显著水平为0.01级或0.05级。不同自由度的显著水平理论值记为t(df)0.01和t(df)0.054、比较计算得到的t值和理论t值,推断发生的概率,依据下表给出的t值与差异显著性关系表作出判断。T值与差异显著性关系表tP值差异显著程度差异非常显著差异显著t 0.05差异不显著5、根据是以上分析,结合具体情况,作出结论。编辑T检验举例说明例如,T检验可用于比较药物治疗组与安慰剂治疗组病人的测量差别。理论上,即使样本量很小时,也可以进行T检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levenes检验。如果不满足这些条件,只好使用非参数检验代替T检验进行两组间均值的比较。T检验中的P值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧T检验概率。1、数据的排列为了进行独立样本T检验,需要一个自(分组)变量(如性别:男女)与一个因变量(如测量值)。根据自变量的特定值,比较各组中因变量的均值。用T检验比较下列男、女儿童身高的均值。性别身高对象1对象2对象3对象4对象5男性男性男性女性女性111110109102104男性身高均数 = 110女性身高均数 = 1032、T检验图在T检验中用箱式图可以直观地看出均值与方差的比较,见下图:这些图示能够很快地估计并且直观地表现出分组变量与因变量关联的强度。3、多组间的比较科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是T检验的推广。在较为复杂的设计时,方差分析具有许多t-检验所不具备的优点。(进行多次的T检验进行比较设计中不同格子均值时)。编辑T检验注意事项 要有严密的抽样设计随机、均衡、可比 选用的检验方法必须符合其适用条件(注意:t检验的前提是资料服从正态分布) 单侧检验和双侧检验单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第错误的可能性大。 假设检验的结论不能绝对化 不能拒绝H0,有可能是样本数量不够拒绝H0 ,有可能犯第类错误 正确理解P值与差别有无统计学意义P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同 假设检验和可信区间的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产假工资发放申请书
- 申请黔彩终端申请书
- 劳动仲裁撤销申请书
- 2025汽车维修合同协议范本
- 2025合同样例股权转让协议范本
- 孤寡老人申请书
- 落户申请书日记
- 家宴制作服务申请书
- 2025【合同范本】基坑支护土方承包合同
- 安全检查及安全培训标语课件
- 2025年成考专升本《生态学基础》试题与答案
- 大模型+智能交通高效出行与城市治理可行性分析报告
- 2025年民事诉讼法试题及答案
- 26年中考数学几何模型解读与训练专题33圆中的重要模型之圆幂定理模型(学生版+名师详解版)
- 吉利汽车2025年并购后的企业转型与市场竞争力提升报告
- 煤气罐起火安全培训课件
- 工厂出差安全培训内容记录课件
- SPSS操作课件教学课件
- 2021-2025年高考地理真题知识点分类汇编之宇宙中的地球
- 家庭洗衣知识培训课件
- 《整治形式主义为基层减负若干规定》知识解读
评论
0/150
提交评论