反比例函数图像和性质.docx_第1页
反比例函数图像和性质.docx_第2页
反比例函数图像和性质.docx_第3页
反比例函数图像和性质.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课 题反比例函数授课日期第一次授课班级课型第二次教案类别常规课第三次 教学目标知识与技能利用反比例函数的知识分析、解决实际问题过程与方法渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型情感态度与价值观教学重点利用反比例函数的知识分析、解决实际问题教学难点分析实际问题中的数量关系,正确写出函数解析式,解决实际问题辅助手段教学内容及过程(侧重突出重点和突破难点的方法和措施)复案调整 课堂引入1小明家新买了几桶墙面漆,准备重新粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么?2台灯的亮度、电风扇的转速都可以调节,你能说出其中的道理吗?题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式,得到函数动力F是自变量动力臂的反比例函数,当1.5时,代入解析式中求F的值;(2)问要利用反比例函数的性质,越大F越小,先求出当F200时,其相应的值的大小,从而得出结果。根据物理公式PRU2,当电压U一定时,输出功率P是电阻R的反比例函数,则,(2)问中是已知自变量R的取值范围,即110R220,求函数P的取值范围,根据反比例函数的性质,电阻越大则功率越小,得220P440教学内容及过程(侧重突出重点和突破难点的方法和措施)复案调整例1(补充)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过_分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:(1)药物燃烧时,由图象可知函数y是x的正比例函数,设,将点(8,6)代人解析式,求得,自变量0x8;药物燃烧后,由图象看出y是x的反比例函数,设,用待定系数法求得教学内容及过程(侧重突出重点和突破难点的方法和措施)复案调整(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因此,只能在燃烧后的某一时间进入办公室,先将药含量y1.6代入,求出x30,根据反比例函数的图象与性质知药含量y随时间x的增大而减小,求得时间至少要30分钟(3)药物燃烧过程中,药含量逐渐增加,当y3时,代入中,得x4,即当药物燃烧4分钟时,药含量达到3毫克;药物燃烧后,药含量由最高6毫克逐渐减少,其间还能达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论