2016中考数学几何动点问题模拟题.doc_第1页
2016中考数学几何动点问题模拟题.doc_第2页
2016中考数学几何动点问题模拟题.doc_第3页
2016中考数学几何动点问题模拟题.doc_第4页
2016中考数学几何动点问题模拟题.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2016中考数学几何动点问题模拟题1、如图1,RtABC中,ACB90,AC6 cm,BC8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ(1)若BPQ与ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQCP,求t的值;(3)试证明:PQ的中点在ABC的一条中位线上图1 图2思路点拨1BPQ与ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程2作PDBC于D,动点P、Q的速度,暗含了BDCQ3PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然满分解答(1)RtABC中,AC6,BC8,所以AB10BPQ与ABC相似,存在两种情况: 如果,那么解得t1 如果,那么解得图3 图4(2)作PDBC,垂足为D在RtBPD中,BP5t,cosB,所以BDBPcosB4t,PD3t当AQCP时,ACQCDP所以,即解得图5 图6(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E由于H是PQ的中点,HF/PD,所以F是QD的中点又因为BDCQ4t,所以BFCF因此F是BC的中点,E是AB的中点所以PQ的中点H在ABC的中位线EF上2、如图1,在ABC中,ACB90,BAC60,点E是BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DHAC,垂足为H,连接EF,HF(1)如图1,若点H是AC的中点,AC,求AB、BD的长;(2)如图1,求证:HFEF(3)如图2,连接CF、CE,猜想:CEF是否是等边三角形?若是,请证明;若不是,请说明理由图1 图2思路点拨1把图形中所有30的角都标注出来,便于寻找等角和等边2中点F有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了满分解答(1)如图3,在RtABC中,BAC60,AC,所以AB在RtADH中,DAH30,AH,所以DH1,AD2在RtADB中,AD2,AB,由勾股定理,得BD(2)如图4,由DAB90,BAC60,AE平分BAC,得DAE60,DAH30在RtADE中,AE在RtADH中,DH所以AEDH因为点F是RtABD的斜边上的中线,所以FAFD,FADFDA所以FAEFDH所以FAEFDH所以EFHF图3 图4 图5(3)如图5,作FMAB于M,联结CM由FM/DA,F是DB的中点,得M是AB的中点因此FM,ACM是等边三角形又因为AE,所以FMEA又因为CMCA,CMFCAE30,所以CMFCAE所以MCFACE,CFCE所以ECFACM60所以CEF是等边三角形3、如图1,在RtABC中,A90,AB6,AC8,点D为边BC的中点,DEBC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且PDQ90(1)求ED、EC的长;(2)若BP2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若PDF为等腰三角形,求BP的长图1 备用图思路点拨1第(2)题BP2分两种情况2解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系3第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ解答:(1)在RtABC中, AB6,AC8,所以BC10在RtCDE中,CD5,所以,(2)如图2,过点D作DMAB,DNAC,垂足分别为M、N,那么DM、DN是ABC的两条中位线,DM4,DN3由PDQ90,MDN90,可得PDMQDN因此PDMQDN所以所以,图2 图3 图4如图3,当BP2,P在BM上时,PM1此时所以如图4,当BP2,P在MB的延长线上时,PM5此时所以(3)如图5,如图2,在RtPDQ中,在RtABC中,所以QPDC由PDQ90,CDE90,可得PDFCDQ因此PDFCDQ当PDF是等腰三角形时,CDQ也是等腰三角形如图5,当CQCD5时,QNCQCN541(如图3所示)此时所以如图6,当QCQD时,由,可得所以QNCNCQ(如图2所示)此时所以不存在DPDF的情况这是因为DFPDQPDPQ(如图5,图6所示)图5 图64、如图1,在RtABC中,ACB90,AB13,CD/AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,BAE的平分线交BC于点G (1)当CE3时,求SCEFSCAF的值;(2)设CEx,AEy,当CG2GB时,求y与x之间的函数关系式;(3)当AC5时,联结EG,若AEG为直角三角形,求BG的长图1 思路点拨1第(1)题中的CEF和CAF是同高三角形,面积比等于底边的比2第(2)题中的ABC是斜边为定值的形状不确定的直角三角形3第(3)题中的直角三角形AEG分两种情况讨论满分解答(1)如图2,由CE/AB,得由于CEF与CAF是同高三角形,所以SCEFSCAF313(2)如图3,延长AG交射线CD于M 图2由CM/AB,得所以CM2AB26由CM/AB,得EMABAM又因为AM平分BAE,所以BAMEAM所以EMAEAM所以yEAEM26x图3 图4(3)在RtABC中, AB13,AC5,所以BC12如图 4,当AGE90时,延长EG交AB于N,那么AGEAGN所以G是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论