5.2认识函数.doc_第1页
5.2认识函数.doc_第2页
5.2认识函数.doc_第3页
5.2认识函数.doc_第4页
5.2认识函数.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.2 认识函数(1) 和平中学:褚晶晶教学目标1、通过实例,了解函数的概念 2、了解函数的三种表示法:(1)解析法;(2)列表法;(3)图象法3、理解函数值的概念 4、会在简单情况下,根据函数的表示式求函数的值教学重点与难点教学重点:函数的概念、表示法等,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点 教学难点:用图象来表示函数关系涉及数形结合,学生理解它需要一个较长且比较具体的过程,是本节教学的难点教学过程教学过程分以下6个环节:创设情境、探究新知、应用新知、课堂练习 、知识整理、布置作业(1) 创设情境 导入新课引言:我们生活在一个充满变化的世界里。以大家的成长经历为例,从小学到初中,我们年龄增长了、身体长高了、体重增加了、知识增多了、。同学们,你们还能举出在一个变化过程中不断变化的量的例子吗?(学生发言) 看来,万物皆变,而在各种各样的变化中有一些变化是有共同特点的,今天我们来研究一些特殊的变化,在这些变化中,变量遵循一定的关系!下面请同学们看几个例子:设计意图:函数概念的起始课情境创设应具有整体观 首先要提供多种量与量之间关系的实例 如多个量的对应关系,两个量间的一对多,多对一,一对一关系等,让学生了解客观世界中量与量之间联系的多样性、复杂性、其次从多样、复杂的量与量之间关系中研究最简单,特殊的两个量之间的特殊对应关系: 单值对应 这样使学生在更广泛的背景中经历筛选 提炼出新的数学知识的过程 逐步领悟化繁为简的数学研究方法 同时明白为什么要学习函数概念 当然 这里的多个量的对应关, 两个量间的一对多是作为研究背景呈现的 教学时应适当虚化,以突出单值对应。(二)探索新知 尝试发现教师依次呈现下列问题。问题1 汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,请填下面的表格,指出题中有哪些量,并用含t的式子表示s问题2 某地在24小时内的气温变化图如下,图中有哪些量?问题3 在一根弹簧的下端悬挂重物,弹簧原长为10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为m kg,受力后的弹簧长度为lcm。在弹性限度内,怎样用含m的式子表示l?请指出题中有哪些量。设计意图:通过三个简单而熟悉的例子,引导学生在分化和类化各题的特征中发现这样的事实:在一个变化过程中,存在数值发生变化的量和数值始终不变的量。进而为抽象、概括出变量和常量作铺垫;另外,三个问题中变量之间的关系分别用表格、图象和解析式的方式呈现,为后续学习函数的三种表达形式埋下伏笔。(1) 函数的概念: 在第一个环节教师充分引导下,让学生充分表达自己对这些变化关系的共同点的认识,通过不断的补充,完善函数概念,也培养学生学会从具体的实例中抽象出本质的能力,最后教师归纳得出函数的概念: 一般地,如果对于的每一个确定的值,都有唯一确定的值,那么就说是的函数,叫做自变量。例如,上面的问题1中,是的函数,是自变量;问题2中,是对的的函数,是自变量教师指出:函数概念的教学中,要着重引导学生分析问题中一对变量之间的依存关系当其中一个变量确定一个值,另一个变量也相应有一个确定的值问题:学习了函数的概念后,同学们能说说身边还有哪些变化过程是满足函数关系的?设计意图:让学生用函数的眼光看世界,巩固函数的概念!(2)函数的表示法解析法:问题3中l=10+0.5m这样用等式来表示函数关系,叫做解析法,该表达式叫做函数解析式,简称函数式像上例中问题(1)也可以用解析法表示(请学生回答)列表法:有时把自变量的一系列值和函数的对应值列成一个表这种表示函数关系的方法是列表法如表上例中的问题1.再比如问题(2)的类似问题也可以用列表法表示:月份123456789101112平均气温()3.85.19.315.420.224.328.628.023.317.112.26.3图象法: 我们还可以用图象法来表示函数,例如问题2的图象就表示气温随时间的变化而变化,再比如骑车时热量消耗(焦)与身体质量(千克)之间的函数关系解析法、图象法和列表法是函数的三种常用的表示方法教师指出:解析法、列表法、图象法是表示函数的三种方法,都很重要,不能有所偏颇尤其是列表法、图象法在今后代数、统计领域的学习中经常用到,教学中应引起学生的重视对于列表法,图象法,如何表示两个变量之间的函数关系,学生可能不太容易理解,教学中可以用实例和教材上的实例来具体说明它们表示两个变量之间的函数关系的方法(3)函数值概念与自变量对应的值叫做函数值,它与自变量的取值有关,通常函数值随着自变量的变化而变化若函数用解析法表示,只需把自变量的值代人函数式,就能得到相应的函数值例如对于函数=16,当=5时,把它代人函数解析式,得=165=80(元)=80叫做当自变量=5时的函数值由于函数值的概念是由函数的概念派生出来,用列表法、图象法表示函数时同样存在函数值的概念,教学中也可以增加一些具体例子,来加深学生的印象若函数用列表法表示我们可以通过查表得到例如一年内某城市月份与平均气温的函数关系中,当=2时,函数值=5.1;当=10时,函数值=17.1若函数用图象法表示例如骑车时热量消耗(焦)与身体质量(千克)之间的函数关系中,对给定的自变量的值,怎样求它的函数值呢?如x=50,我们只要作一直线垂直于x轴,且垂足为点(50,0),这条直线与图象的交点P(50,399)的纵坐标就是就是当函数值x=50时的函数值,即W=399(焦)教师归纳:解析法代一代,列表法查一查,图像法画一画 并且当函数用解析法表示时,函数值的概念与学生已经学过的代数式的值的概念几乎没有什么区别,所以课本没有对函数值的概念作重新定义,教学中可以增加一些求函数值的练习,使学生感悟函数值与代数式的值两个概念之间的关系 应用新知:例1 某城市自来水收费实行阶梯水价,收费标准如下表所示:月用水量x(度)0x121218收费标准y (元/度)2.002.503.00(1)y是x的函数吗?为什么?(2)分别求当x=10,16,20时的函数值,并说明它的实际意义答案:(1)是,根据函数的概念,对于x的每一个确定的值,y都有唯一确定的值;(2)当x=10时,y=210=20(元)月用水量10度需交水费20(元);当x=16时,y=212+42.50=34(元)月用水量16度需交水费34(元);当x=20时,y=212+62.50+23=45(元)月用水量45度需交水费45(元)说明 本例安排的目的两个:是让学生进一步巩固函数的概念;让学生体会当函数用列表法给出时函数值的求法本例教学时教师应向学生解释“收费实行阶梯水价”的含义,即月用水量不超过12度时每度2元,超过12度不超过18度时每度2.5元,超过18度时每度3元,如月用水量为38度时,应交水费y =212+62.5+320=99(元)例2 下图是小明放学回家的折线图,其中t表示时间,s表示离开学校的路程 请根据图象回答下面的问题:(1)这个折线图反映了哪两个变量之间的关系?路程s可以看成t的函数吗? (2)求当t=5分时的函数值?(3)当 10t15时,对应的函数值是多少?并说明它的实际意义?(4)学校离家有多远?小明放学骑自行车回家共用了几分钟?答案:(1)折线图反映了s、t两个变量之间的关系,路程s可以看成t的函数;(2)当t=5分时函数值为1km;(3)当 10t15时,对应的函数值是始终为2,它的实际意义是小明回家途中停留了5分钟;(4)学校离家有3.5km,放学骑自行车回家共用了20分钟设计意图:安排本例的主要目的是让学生体会当函数用图象法给出时函数值的求法通过xy0本例的教学,使学生体会函数图象是如何反映自变量与函数之间的关系的,进一步加深学生对函数概念的理解,体验数形结合的数学思想,为后面的一次函数的应用作好准备 课堂练习:全程助

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论