常用的数控机床维修工具.doc_第1页
常用的数控机床维修工具.doc_第2页
常用的数控机床维修工具.doc_第3页
常用的数控机床维修工具.doc_第4页
常用的数控机床维修工具.doc_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

激光干涉仪可对机床、三测机及各种定位装置进行高精度的(位置和几何)精度校正,可完成各项参数的测量,如线形位置精度、重复定位精度、角度、直线度、垂直度、平行度及平面度等。 一、常用的数控机床维修工具1.拆卸及装配工具(1)单头钩形扳手:分为固定式和调节式,可用于扳动在圆周方向上开有直槽或孔的圆螺母。(2)端面带槽或孔的圆螺母扳手:可分为套筒式扳手和双销叉形扳手。(3)弹性挡圈装拆用钳子:分为轴用弹性挡圈装拆用钳子和孔用弹性挡圈装拆用钳子。(4)弹性手锤:可分为木锤和铜锤。(5)拉带锥度平键工具:可分为冲击式拉锥度平键工具和抵拉式拉锥度平键工具。(6)拉带内螺纹的小轴、圆锥销工具(俗称拨销器)。(7)拉卸工具:拆装在轴上的滚动轴承、皮带轮式联轴器等零件时,常用拉卸工具,拉卸工具常分为螺杆式及液压式两类,螺杆式拉卸工具分两爪、三爪和铰链式。(8)拉开口销扳手和销子冲头。2.常用的机械维修工具(1)尺:分为平尺、刀口尺和90角尺。(2)垫铁:面为90的垫铁、角度面为55的垫铁和水平仪垫铁。(3)检验棒:有带标准锥柄检验棒、圆柱检验棒和专用检验棒。(4)杠杆千分尺:当零件的几何形状精度要求较高时,使用杠杆千分尺可满足其测量要求,其测量精度可达0001mm。(5)万能角度尺:用来测量工件内外角度的量具,按其游标读数值可分为2和5两种,按其尺身的形状可分为圆形和扇形两种。二、常用的数控机床维修仪表1百分表百分表用于测量零件相互之间的平行度、轴线与导轨的平行度、导轨的直线度、工作台台面平面度以及主轴的端面圆跳动、径向圆跳动和轴向窜动。读数方法百分表的读数方法为:先读小指针转过的刻度线(即毫米整数),再读大指针转过的刻度线(即小数部分),并乘以0.01,然后两者相加,即得到所测量的数值。2杠杆百分表杠杆百分表又被称为杠杆表或靠表,是利用杠杆-齿轮传动机构或者杠杆-螺旋传动机构,将尺寸变化为指针角位移,并指示出长度尺寸数值的计量器具.用于测量工件几何形状误差和相互位置正确性,并可用比较法测量长度。 杠杆百分表目前有正面式、侧面式及端面式几种类型. 杠杆百分表的分度值为0.01mm,测量范围不大于1mm.它的表盘是对称刻度的. 杠杆百分表可用于测量形位误差,也可用于比较测量的方法测量实际尺寸,还可以测量小孔、凹槽、孔距、坐标尺寸等.使用时应注意使测量运动方向与测头中心成垂直,以免产生测量误差。3千分表及杠杆千分表用精密齿 千分表结构图条齿轮机构制成的表式通用长度测量工具。图为千分表的结构。当量杆移动1毫米时,这一移动量通过齿条、轴齿轮1、齿轮和轴齿轮2放大后传递给安装在轴齿轮2上的指针,使指针转动一圈。若增加齿轮放大机构的放大比,使圆表盘上的分度值为0.001毫米或0.002毫米(圆表盘上有200个或100个等分刻度),则这种表式测量工具即称为千分表。二者的原理是相同的。千分表是美国的B.C.艾姆斯等于1890年制成的。它常用于形状和位置误差以及小位移的长度测量。千分表的示值范围一般为010毫米,大的可以达到100毫米。改变测头形状并配以相应的支架,可制成千分表的变形品种,例如厚度千分表、深度 千分表千分表和内径千分表(见孔径测量)等。如用杠杆代替齿条则可制成杠杆千分表和杠杆千分表,其示值范围较小,但灵敏度较高。此外,它们的测头可以在一定角度内转动,能适应不同方向的测量,结构也紧凑。它们适用于测量普通千分表难以测量的外圆、小孔和沟槽等的形状和位置误差。(见彩图) 千分表有纵形()、横形()、垂直形()几种,要根据使用用途选择合适的种类。 纵形():正面观测刻度板的话,测头为前后移动型 横形():正面观测刻度板的话,测头为左右移动型 垂直形():纵形刻度板相对于测头垂直安装型种类1、表盘千分表 (1)刻度为0.01的千分表 测量轴移动1mm相当于长轴转动一圈,测量范围有5mm、10mm不等。 (2)刻度为0.001的千分表 测量轴移动0.2mm相当于长轴转动一圈,测量范围有1m、2mm、5mm不等。 2、杠杆式千分表 杠杆式千分表中,一般有按照0.01mm分度,测量范围为0.5mm、0.8mm的千分表以及按照0.002mm分度,测量范围为0.2mm、0.28mm的千分表。 3、电子数显千分表 4、数显测厚千分表 5、数显内径千分表结构千分表的结构较简单,传动机构是齿轮系,外廓尺寸小,重量轻,传动机构惰性小,传动比 千分表结构较大,可采用圆周刻度,并且有较大的测量范围,不仅能作比较测量,也能作绝对测量。 千分表的工作原理,是将被测尺寸引起的测杆微小直线移动,经过齿轮传动放大,变为指计在刻度盘上的转动,从而读出被测尺寸的大小。 千分表的构造主要由3个部件组成:表体部分、传动系统、读数装置。 千分表已实施出口产品质量许可制度,未取得出口质量许可证的产品不准出口。电子千分尺 1、外观:百分表的表蒙应透明洁净,不应有气泡和明 电子千分表显的划痕;表盘刻线应清晰平直,无目力可见的断线和粗细不匀;测头上不应有碰伤、锈迹、斑点和明显的划痕。其它表面上不应有脱漆、脱铬和毛刺及影响外观质量的其它缺陷。表上必须有制造厂名、分度值和出厂编号。使用中和修理后的百分表,允许有不影响使用准确度的外观缺陷。 2、各部分相互作用: 表圈转动应平稳,静止应可靠,与表体的配合应无明显的松动。 测杆的移动及指针回转应平稳、灵活,不得有跳动、卡住和阻滞现象。 指针应紧固在轴上,测杆移动时,指针不应松动。 紧固百分表装夹套筒后,测杆应能自由移动,不得卡住。 3、指针与表盘的相互位置。 百分表的测杆处于自由状态时,调整表盘零刻线和测杆轴线方向重合,此时指针位置应符合表61036的要求。 表盘刻度型式 指针在距零刻度左上方 50 412 100 825 200 1650 百分表测杆行程应超过工作行程终点,超过的行程应满足表61037的要求。 表61037超行程要求 测量范围(mm) 表盘刻度型式(分度) 超过终点的行程不少于(mm) 0-3 50 0.3 0-5,0-10 100 0.5 转动指针对准任何整转数时,指针位置偏离零位应不大于15m。 指针末端与表盘刻线方向应一致,无目力可见的偏斜,指针末端上表面至表盘之间的距离应不超过表61038的要求。 表61038指针末端上表面至表盘距离 表盘刻度型式(分度) 指针末端上表面至表盘距离(mm) 50、100 0.9 指针末端应盖住短刻线长度的3080%。 4、指针末端及表盘刻线宽度:应不超过表61039的要求。 表61039指针末端及表盘刻线宽度 测量范围(mm) 表盘刻度型式(分度) 表圈直径(mm) 指针末端及表盘刻线宽度(mm) 03 50 42 0.100.20 05,010 100 42 0.150.25 5、测头测量面的表面粗糙度:应不超过表61040的要求。 表61040测头测量面表面粗糙度 测头材料 钢 硬质合金 宝石 测头测量面表面粗糙度 Ra 0.1 Ra 0.2 Ra 0.05(6) 装夹套筒直径:直径为800-0.015。 7、测力:测力应不超过表61040的要求。 正行程中的最大测力值即为百分表的最大测力。单向行程中的最大测力值与最小测力值之差即为表的单向行程测力变化,各点的正行程测力值与反行程测力值之差,即为同一点正反向测力变化,均不应超过表61041的要求。 表61041测力要求 测量范围(mm) 最大测力 单向行程测力变化 同一点正反向测力变化 03,05,010 1.5 0.5 0.4 8、示值变动性:应不超过表61042的要求。 9、测杆径向受力对示值的影响不应超过表61042的要求。 表61042示值变动性 测量范围(mm) 示值变动性(m) 测杆径向受力对示值影响(m) 0级 1级 0级 1级 0-3,0-5,0-10 3 5 3 5 10、示值误差:百分表的示值误差不得超过表61043的要求。 表61043百分表示值误差 准确度 等级 百分表示值误差(m) 回程误差 (m) 任意0.1mm 任意1mm 03mm 05mm 010mm 0 5 8 10 12 14 3 1 7 10 15 18 20 5 11、回程误差:百分表的回程误差应不超过表61043的要求。外径千分尺的读数 读数时,先以微分筒的端面为准线,读出固定套管下刻度线的分度值(只读出以毫米为单位的整数),再以固定套管上的水平横线作为读数准线,读出可动刻度上的分度值,读数时应估读到最小刻度的十分之一,即0001毫米。如果微分筒的端面与固定刻度的下刻度线之间无上刻度线,测量结果即为下刻度线的数值加可动刻度的值;如微分筒端面与下刻度线之间有一条上刻度线,测量结果应为下刻度线的数值加上05毫米,再加上可动刻度的值, 有的千分尺的可动刻度分为100等分,螺距为1毫米,其固定刻度上不需要半毫米刻度,可动刻度的每一等分仍表示001毫米。有的千分尺,可动刻度为50等分,而固定刻度上无半毫米刻度,只能用眼进行估计。对于已消除零误差的千分尺,当微分筒的前端面恰好在固定刻度下刻度线的两线中间时,若可动刻度的读数在4050之间,则其前沿未超过05毫米,固定刻度读数不必加05毫米;若可动刻度上的读数在010之间,则其前端已超过下刻度两相邻刻度线的一半,固定刻度数应加上05毫米。 外径千分尺的零误差的判定 校准好的千分尺,当测微螺杆与测砧接触后,可动刻度上的零线与固定刻度上的水平横线应该是对齐的。如果没有对齐,测量时就会产生系统误差零误差。如无法消除零误差,则应考虑它们对读数的影响。若可动刻度的零线在水平横线上方,且第x条刻度线与横线对齐,即说明测量时的读数要比真实值小x100毫米,这种零误差叫做负零误差;若可动刻度的零线在水平横线的下方,且第y条刻度线与横线对齐,则说明测量时的读数要比真实值大y100毫米,这种零误差叫正零误差。 对于存在零误差的千分尺,测量结果应等于读数减去零误差,即物体长度固定刻度读数可动刻度读数零误差。4比较仪 利用相对法进行测量的长度测量工具,主要由测微仪和比较仪座组成。测量时,先用量块研合组成与被测基本尺寸相等的量块组,再用此量块组使测微仪指针对零,然后换上被测工件,测微仪指针指示的即为被测尺寸的偏差值。比较仪可分为扭簧比较仪与杠杆齿轮比较仪。扭簧比较仪特别适用于精度要求较高的跳动量的测量。和百分表和千分表、杠杆齿轮式测微仪或扭簧测微仪等机械式指示表作为放大、指示部件。杠杆齿轮式测微仪的工作原理与百分表和千分表相似。但第1级放大机构是杠杆,其分度值通常为1微米。扭簧测微仪是一种具有无机械摩擦放大机构的指示表(图 扭簧测微仪工作原理.它的主要放大元件是一根从中间起一端向右扭曲,另一端向左扭曲的金属薄片(宽度为0.1毫米左右,厚度为0.005毫米左右),称为扭簧丝。在它的中间粘有一根直径约为0.06毫米的空心玻璃丝做的指针。当测杆上下移动时,可动支架把上下位移转换为左右位移,使扭簧丝缩短或伸长,并带动指针转一个角度,从表盘上即可读出测杆的位移量。扭簧测微仪的灵敏度很高,常见的分度值有1微米、0.5微米、0.2微米和0.1微米几种,最高可达0.02微米。示值范围一般为50个分度值。机械式比较仪常用在车间和计量室测量工件外径和厚度等。5水平仪水平仪是一种测量小角度的常用量具。在机械行业和仪表制造中,用于测量相对于水平位置的倾斜角、机床 水平仪类设备导轨的平面度和直线度、设备安装的水平位置和垂直位置等。按水平仪的外形不同可分为:框式水平仪和尺式水平仪两种;按水准器的固定方式又可分为:可调式水平仪和不可调式水平仪。1. 气泡水平仪 (Sprit levels)气泡水平仪系检验机器安装面或平板是否水平,及测知倾斜方向与角度大小的测量仪器,其外形系用高级钢料制造架座,经精密加工后,其架座底座必须平整,座面中央装有纵长圆曲形状的玻璃管,也有在左端附加横向小型水平玻璃管,管内充满醚或酒精,并留有一小气泡,它在管中永远位于最高点。玻璃筒上在气泡两端均有刻度分划。通常,工厂安装机器时,常用气泡水平仪的灵敏度为0.01mm/m、0.02mm/m、 气泡水平仪0.04mm/m、0.05mm/m、0.1mm/m、0.3mm/m和0.4mm/m等规格,即是将水平仪置于 1 m 长的直规或平板之上,当其中一端点有灵敏度指示大小的差异时,如灵敏度为0.01 mm/m,即是表示直规或平板的两端点有0.01 mm的高低差异 ( 相当于两端点相差2秒 ),当1 m长的有h mm高度差时,气泡会一个刻度的差异。气泡水平仪的原理是利用气泡在玻璃管内,气泡可经常保持在最高位置的特性 对于一定的倾斜角 ,而欲使气泡的移动量大 ( 即所谓灵敏度良好 ),需增大圆弧半径 (R) 即可。若水平仪每刻度距离为2 mm和灵敏度为0.01 mm/m时,相当1 m的两端点相差2秒。即是气泡管半径为206.185公尺,装置在框架内,不同灵敏度即有不同半径,而与框架长短并无直接关系。 使用水平仪应先行检查,先将水平仪放在平板上,读取气泡的刻度大小,然后将水平仪反转置于同一位置 ,再读取其刻度大小,若读数相同,即表示水平仪底座与气泡管相互间的关系是正确的。否则,需用微调螺丝调整直到读数完全相同,才可作测量工作。若想检查水平仪精度,可用正弦杆和量块组成的已知角度大小。同时,欲测量较大倾斜角也可配合正弦杆与水平仪共同使用。 新式的水平仪作为传统水泡式倾角的替代品,现在更多的应用在道路工程,机械测量,建筑工程,工业平台,石油勘测,军工,船舶,以及其他需要重力参考系下的倾角或者水平的情况。 2. 电子水平仪 (Electronic levels)电子式水平仪,它用来测量高精度的工具机,如NC车床、铣床、切削加工机、三次元量床等床面,其灵敏度非常高,若以测量时可左右偏移25刻度计算,测量工件只在一定的倾斜范围内均可测量。 框架电子水平仪电子水平仪的主要原理有电感式和电容式等两种。根据测量方向不同还可分为一维和二维电子水平仪. 电感式原理:当水平仪的基座因待测工件倾斜而倾斜时,其内部摆锤因移动所造成感应线圈的电压变化。电容式水平仪其测量原理为一圆形摆锤自由悬挂在细在线,摆锤受地心重力所影响,且悬浮于无摩擦状况。摆锤的两边均设有电极且间隙相同时电容量是相等,若水平仪受待测工件所影响而造成,两间隙不同距离改变即产生电容不同,形成角度的差异。6光学平直仪在机械维修中,常用来检查床身导轨在水平面内和垂直面内的直线度、检验用平板的平面度,光学平直仪是当前导轨直线度测量方法中较先进的仪器之一。7经纬仪常用精密光学经纬仪简介 经纬仪是按照所能达到的测角精度来分类的,凡适用于国家各等级三角、导线测量的光学经纬仪,通称为精密光学经纬仪。用于地形及工程测量的光学经纬仪称为普通光学经纬仪或工程光学经纬仪。 国家三角测量和精密导线测量规范指出,用于国家各级角度观测的精密光学经纬仪图3-20 威特T3经纬仪系列分为:J07,J1,J2;普通光学经纬仪分为:J6和J30。“J”为“经纬仪”汉语拼音的第一个字母;数标为该级仪器能达到的测角精度指标。图3-21 威特T2经纬仪常用精密光学经纬仪系列中的威特T3、威特T2、蔡司010、苏光J2经纬仪的外形和主要部件名称分别见图3-20、图3-21、图3-22、图3-23,主要技术参数见表3-1。1垂直制动螺旋;2测微轮;3读数显微镜的目镜管;4垂直微动螺旋;5度盘影像变换钮;6水平微动螺旋;7水平制动螺旋;8三角基座;9垂直度盘符合水准器反射棱镜;10瞄准器;11垂直度盘水准器改正螺旋;12望远镜调焦环;13度盘照明反光镜;14望远镜的目镜管;15照准部的水准器;16圆盒水准器;17照准部与基座的连接螺旋;18垂直度盘水准器;19垂直度盘水准器微动螺旋;20水平度盘变换螺旋;21水平度盘变换螺旋保险钮;22物镜内镀银面;23十字丝照明反光镜;24照准部水准器改正螺旋;25光学对点器;26脚螺旋图3-22 蔡司010经纬仪1望远镜物镜;2光学瞄准器;3十字丝照明反光板螺旋;4测微轮;5读数显微镜管;6垂直微动螺旋弹簧套;7度盘影像变换螺旋;8照准部水准器校正螺丝;9水平度盘物镜组盖板;10水平度盘变换螺旋护盖;11垂直度盘转像透镜组盖板;12望远镜调焦环;13读数显微镜目镜;14望远镜目镜;15垂直度盘物镜组盖板;16垂直度盘指标水准器护盖;17照准部水准器;18水平制动螺旋;19水平度盘变换螺旋;20垂直度盘照明反光镜;21垂直度盘指标水准器观察棱镜;22垂直度盘指标水准器微动螺旋;23水平度盘转像透镜组盖板;24光学对点器;25水平度盘照明反光镜;26照准部与基座的连接螺旋;27固紧螺母;28垂直制动螺旋;29垂直微动螺旋;30水平微动螺旋;31三角基座;32脚螺旋;33三角底板图3-23 苏光J2经纬仪经纬仪是机床精度检查和维修中常用的高精度的仪器之一,常用于数控铣床和加工中心的水平转台和万能转台的分度精度的精确测量,通常与平行光管组成光学系统来使用。8转速表转速表常用于测量伺服电动机的转速,是检查伺服调速系统的重要依据之一,常用的转速表有离心式转速表和数字式转速表等。 转速表转速表将接收的数字脉冲信号(由传感器发出的),处理后直接读入cpu的计数口,经软件计算出转速、和指针相应的位置,再通过cpu的控制口,放大后驱动步进电机正负方向旋转,指示相应转速值(指针直接安装在步进电机的旋转轴上),步进电机走一步仅为1/3度。 1、静力矩大指针不易抖动,抗振性能强。 2、采用单片微处理器通过软件设计,所以精度高、抗干扰性强。 3、小时计采用液晶显示,无机械部分,所以更可靠和更具有时代感。 由于是指针指示符合传统视认习惯,又便于计算机远程处理和网络化要求,所以数字化步进电机仪表是现代汽车仪表和摩托车仪表的发展趋势,Switec公司的步进电机在国内外已广泛用于各种汽车、摩托车和工程机械仪表。车用微型步进电机是一种专用的新型汽车仪表配件,利用它设计的仪表既符合传统视认习惯又能满足数化处理要求,是现代化仪表的理想配件三、常用的数控机床维修仪器 在数控机床的故障检测过程中,借助一些必要的仪器是必要的,仪器能从定量分析角度直接反映故障点状况,起到决定作用。 1测振仪器 测振仪是振动检测中最常用、最基本的仪器,它将测振三、常用的数控机床维修仪器在数控机床的故障检测过程中,借助一些必要的仪器是必要的,仪器能从定量分析角度直接反映故障点状况,起到决定作用。1测振仪器测振仪是振动检测中最常用、最基本的仪器,它将测振传感器输出的微弱信号放大、变换、积分、检波后,在仪器仪表或显示屏上直接显示被测设备的振动值大小。为了适应现场测试的要求,测振仪一般都做成便携式与笔式测振仪,测振仪外形如图1-18所示。测振仪用来测量数控机床主轴的运行情况、电动机的运行情况,甚至整机的运行情况,可根据所需测定的参数、振动频率和动态范围,传感器的安装条件,机床的轴承型式(滚动轴承或滑动轴承)等因素,分别选用不同类型的传感器。常用的传感器有涡流式位移传感器、磁电式速度传感器和压电加速度传感器。也是有效的,目前常用的测振仪有美国本特利公司的TK-81、德国申克公司的VIBROMETER-20、日本RI-0N公司的VM-63以及一些国产的仪器。图1-18测振仪外形测振判断的标准,一般情况下在现场最便于使用的是绝对判断标准,它是针对各种典型对象制定的,例如国际通用标准ISO2372和ISO3945。相对判断标准适用于同台设备。当振动值的变化达到4dB时,即可认为设备状态已经发生变化。所以,对于低频振动,通常实测值达到原始值的1.52倍时为注意区,约4倍时为异常区;对于高频振动,将原始值的3倍定为注意区,约6倍时为异常区。实践表明,评价机器状态比较准确可靠的办法是用相对标准。2红外测温仪图1-19红外测温仪外形红外测温是利用红外辐射原理,将对物体表面温度的测量转换成对其辐射功率的测量,采用红外探测器和相应的光学系统接收被测物不可见的红外辐射能量,并将其变成便于检测的其他能量形式予以显示和记录,红外测温仪外形如图1-19所示。按红外辐射的不同响应形式,分为光电探测器和热敏探测器两类。红外测温仪用于检测数控机床容易发热的部件,如功率模块、导线接点、主轴轴承等。主要制造厂商有中国昆明物理研究所的HcW系列,中国西北光学仪器厂的HCW-1、HCW-2,深圳江洋光公司的IR系列,美国LAND公司的CYCLOPS、SOLD型。利用红外原理测温的仪器还有红外热电视、光机扫描热像仪以及焦平面热像仪等。红外诊断的判定主要有温度判断法、同类比较法、档案分析法、相对温差法以及热像异常法。3激光干涉仪激光干涉仪可对机床、三测机及各种定位装置进行高精度的(位置和几何)精度校正,可完成各项参数的测量,如线形位置精度、重复定位精度、角度、直线度、垂直度、平行度及平面度等。其次,它还具有一些选择功能,如自动螺距误差补偿(适用大多数控系统)、机床动态特性测量与评估、回转坐标分度精度标定、触发脉冲输入输出功能等。激光干涉仪用于机床精度的检测及长度、角度、直线度、直角等的测量,精度高、效率高、使用方便、测量长度可达十几米甚至几十米,精度达微米级。其外形见图1-20。图1-20激光干涉仪的外形3.2 精密光学经纬仪的构造及使用方法控制测量中,需用经纬仪进行大量的水平角和垂直角观测。使用经纬仪进行角度观测,最重要的环节是:仪器整平、照准和读数。我们围绕这三个环节,对光学经纬仪的构造和使用方法作如下介绍。 3.2.1 水准器图3-3 水准轴与水准器轴 由前节可知,测角时必须使经纬仪的垂直轴与测站铅垂线一致。这样,在仪器结构正确的条件下,才能正确测定所需的角度。要满足这一要求,必须借助于安装在仪器照准部上的水准器,即照准部水准器。照准部水准器一般采用管状水准器。管水准器是用质量较好的玻璃管制成,将玻璃管的内壁打磨成光滑的曲面,管内注入冰点低,流动性强,附着力较小的液体,并留有空隙形成气泡,将管两端封闭,就成为带有气泡的水准器,如图3-3所示。1. 水准轴与水准器轴 为了便于观察水准器的倾斜量,在水准管的外壁上刻有若干个分划,分划间隔一般为2mm,其中间点称为零点。 水准器安置在一个金属框架内,并安装在经纬仪照准部支架上,所以把这种管状水准器称为照准部水准器。照准部水准器框架的一端有水准器校正螺旋,通过校正螺旋,使照准部水准器的水准器轴与仪器垂直轴正交。 所谓水准器轴,就是过水准器零点O,水准管内壁圆弧的切线,如图3-3所示。另外,由于水准管内的液体比空气重,当液体静止时,管内气泡永远居于管内最高位置,如图3-3中的位置。显然,过作圆弧的切线,此切线总是水平的,我们称此切线为水准轴由此可知,使其水准轴与水准器轴相重合,即气泡最高点与水准器分划中心O重合,这时经纬仪的垂直轴与测站铅垂线重合,这个过程称为整置仪器水平。 2. 水准器格值 我们知道,当水准器倾斜时,水准管内的气泡便会随之移动。不同的水准器,虽然倾斜的角度完全相同,各自的气泡移动量不会完全相同。这是因为不同的水准器,它们的灵敏度不同。灵敏度以水准器格值表示。所谓水准器格值,就是当水准气泡移动一格时,水准器轴所变动的角度,也就是水准管上的一格所对应的圆心角。如前所述,水准管的内壁是一圆弧,圆弧的曲率半径愈大,水准管上一格所对应的圆心角愈小,即水准器格值愈小,水准器的灵敏度就愈高。如图3-4,设气泡在水准管内移动一个格O,O所对应的圆心角为。若圆弧的半径为R,则为常量206 265) 。 图3-4水准器格值由于水准器轴与仪器的垂直轴正交,若气泡偏离水准器分划零点n个格,当水准器格值已知时,就可以按下式计算出仪器垂直轴倾斜的角度V: (3-2)即垂直轴倾斜角度等于气泡偏离水准器零点的格数乘以水准器格值。3.2.2 望远镜 如前所述,望远镜构成视准轴,在照准目标时形成视准线,以便精确地照准目标。也就是说,望远镜的作用有二:一是将不同距离的远方目标,通过成像,放大视角,以便更清晰地看到目标;二是用望远镜的视准轴精确照准目标,以确定目标的视准线方向。望远镜由物镜和目镜组成,来自目标的光线经过透镜折射成像,如图3-5所示,目标AB经物镜成像,然后再经目镜成为放大的倒像。图3-5 望远镜成像原理另外,为了能够照准目标,在望远镜内安装十字丝网,十字丝网的形状如图36所示。十字丝的竖丝应垂直,横丝应水平。观测水平角时,当目标恰被夹在竖丝中,就算照准了目标。这是测量望远镜与一般望远镜的区别。图3-6 望远镜十字丝网 十字丝的中心与物镜光心的连线称为视准轴。所谓照准,就是使视准轴指向目标,即视准轴与目标在一条直线上。为了能够正确照准目标,要求目标成像恰好落在十字丝网面上。这样在照准时,观测者的眼睛稍微左右移动时,目标与十字丝网的相对位置才不会改变。否则,就会因观测者眼睛位置不同而产生照准误差,称为视差。 为了使目标恰好落在十字丝面上,消除视差,在望远镜的物镜与目镜之间,安装一个调焦透镜。调焦透镜可以前后移动,从而改变目标像AB 的位置。这样,不同的视力,先调整目镜,使十字丝清晰,再调整调焦透镜,使目标像清晰(即目标像落在十字丝网面上),则视差被消除。 综上所述,望远镜由物镜、目镜、十字丝网和调焦透镜四部分组成。物镜和目镜起放大目标像的作用,十字丝与物镜光心构成视准轴供照准目标用;调焦透镜用来调整目标像的位置,起消除视差的作用。其结构如图3-7。图3-7 望远镜结构示意图 3.2.3 水平度盘和测微器 经纬仪的水平度盘和测微器是用以量度水平角的重要部件,它们二者之间以一定的关系结合起来,就能读出照准目标后的水平角或水平方向值。 1. 水平度盘 光学经纬仪的水平度盘都是用玻璃制成的,安置在仪器基座的垂直轴套上,当仪器照准部转动时,要求水平度盘不得转动和移动。 在水平度盘圆周边上精细地刻有等间隔分划线,全周刻360度,每度一标记,按顺时针方向增值,每度间隔内再等间隔刻有若干个小分划,相邻小分划的间隔值就是该水平度盘的最小分格值。如威特T3经纬仪,在每度间隔内刻有十五个分格,显然,每个分格值为。 由于水平度盘的周长有限,所以度盘的分格很小,只有借助显微镜才能看清分划线。即使这样,也只能估读到110格,这远不能满足精确测角的要求。因此,需要安置显微测微器,以精确量取不足一格之值。 2. 光学测微器及测微原理图3-8 反射式度盘成像光路 为了便于理解光学测微器的测微原理,下面首先介绍显微镜的成像光路。 (1)度盘成像光路 目前光学经纬仪的度盘成像光路可分为两类:第一类,光线能透过度盘,称为透射式度盘,以蔡司010经纬仪为代表;另一类在度盘分划面上镀一层银,光线射到度盘分划面上,照亮分划面后又被反射回来,称为反射式度盘,此类经纬仪以威特经纬仪为代表。 1)反射式度盘成像光路 图3-8为反射式度盘成像光路。它与普通显微镜的共同之处在于:都有物镜和目镜。但是,它的作用是精确测定不足一个分格的微小量,因此其结构有如下特性: 第一,为了使度盘对径两端的分划同时成像,来自反光镜的一束光线,在度盘下面的长棱镜的下部被分为二束射入度盘的对径180的两端,照明度盘分划线。然后,带有度盘两端分划的光线又由长棱镜的上部各经两次反射,同时进入物镜,因而,它们能同时成像于一个平面上,又能上下分开。 第二,双菱形棱镜的两个上斜面,就是显微镜的成像面,在此上面有指标线和度盘读数窗的框子,两个棱镜上斜面的交线就是目镜中见到的度盘上、下影像之问的水平线。 第三,测微器由光路中的两块平行玻璃板及测微盘组成。图3-9 透射式度盘成像光路垂直度盘的光路如图3-8所示,不再赘述。2)透射式度盘成像光路图3-9为透射式度盘成像光路,它的成像过程与反射式度盘成像过程大体相同。其不同点之一,度盘的照明方式不同于反射式度盘。如图3-9,光线自反光镜射入后,经棱镜折射透过度盘的左端,再由透镜组将度盘左端的分划成像于度盘右端分划面上,且保持原有的分划宽度,只是将像旋转180。不同点之二,度盘分划成像于直角棱镜的垂直面上,在其上刻有度盘窗口。不同点之三,在物镜与成像面之间放置了两对光楔来构成测微器。 (2)测微器的基本结构和测微原理 由图3-8和图3-9可以看出,图3-8中所示的测微器属于双平行玻璃板式测微器,图3-9 中所示的测微器为双光楔式测微器。 1)双平行玻璃板式测微器测微原理 双平板测微器主要由两块平行玻璃板、测微盘及其他部件构成,见图3-10。由几何光学知:当光线通过两个折射面互相平行的玻璃板时,方向不会产生变化,仅产生平行位移,其位移量与入射角有关。如图3-11所示,当光线垂直于平行玻璃板的折射面(即入射角为零)入射时,并不产生折射、平移。当光线的入射角(即不垂直于折射面)时,出射光线方向虽然不变,但其位置却平移了h。入射角改变时,平移量h也随之改变。对于一定厚度的平行玻璃板,当入射角很小时,光线的平移量h与其入射角成正比,这就是平行玻璃板的特性。 对于双平行玻璃板测微器,当将两块平行玻璃板相对转动时(即一顺时针转动,另一逆 时针转动),度盘对径两端分划也就作相对移动。如果将刻有分划的测微盘与转动平行玻璃板的机构连在一起,而且,当转动平行玻璃板使度盘分划线像相对移动一格时(即各移动半格),测微盘正好从零分划转动到最末一个分划,根据这种关系,测微器就起到量度度盘上不足一格的值的作用。 2)光楔式测微器测微原理光楔式测微器主要由光楔和测微尺组成。由几何光学知道,光楔能使光线向光楔的底面偏折,偏折角的大小与光楔的楔角成正比。 图3-10 双平行玻璃板测微器 图3-11 平行玻璃板行倾斜使光线平移 在测微器中,把楔角相等的两个光楔安置成图3-12的形式,使平面平行于平面,且互相倒置,与光线正交。因为它们的楔角相等且又互相倒置,A光楔使光线偏折向下,B光楔又使光线向上偏折同一量。这样,光线就被平移。如果A光楔固定不动,而把B光楔沿光轴前后移动,则光线的平移量h随两光楔之间的距离增大而增大。当两光楔贴合在一起时,它就成了一块平行玻璃板,对垂直于入射面入射的光线不产生移动。这就说明在一定条件下双光楔可以起到平行玻璃板的作用。但是,两种光学零件的运动方式却不同。平行玻璃板是由于其倾斜使光线产生平移,双光楔则是由于其中一个光楔的直线运动产生平移。图3-12 双光楔对光线的平移图3-13 光楔式测微器测微原理 如图3-13所示,将两组光楔分别安置在度盘对径分划的光路中,下面一块K1为固定光楔,上面一块K2为活动光楔。这样,沿直线移动活动光楔,便可使度盘对径两端的分划光线作相向或相背移动。把活动光楔与测微尺L固定在一起,装在一齿条上,用测微螺旋上的齿轮带动它,转动测微螺旋时,活动光楔。与测微尺便一起运动,度盘对径两端分划光线相对移动一格,测微尺相应从零分划移至末端的最后一个分划。这样,测微尺就可量度出度盘上不足一格的值来。 3. 读数方法如前所述,使用经纬仪进行角度测量,读数是三个环节之一,又由测微器和度盘的作用可知,经纬仪照准目标之后,其读数就是度盘读数和测微器读数之和。那么,只要会读取度盘读数和测微器读数,经纬仪的读数方法即被掌握。 由光学经纬仪光路和测微器结构原理可知,现代精密光学经纬仪一般都采用对径分划同时成像,通过测微器使度盘对径分划线作相向移动并作精确重合,用测微盘量取对径分划像的相对移动量,这种读数方法叫做重合读数法。 重合读数法的基本方法步骤是:(1)先从读数窗中了解度盘和测微盘的刻度与注记,确定度盘的最小格值。 度盘对径最小分格值 测微盘的格值 (2)转动测微螺旋,使度盘正倒像分划线精确重合。读取靠近度盘指标线左侧正像分划线的度数。 (3)读取正像分划线到其右侧对径的倒像分划线(即)之间的分格数n。 (4)读取测微盘上的读数c,c等于测微盘零分划线到测微盘指标线的总格数乘测微盘格值T。 综上所述,可得如下的读数公式: 综合读数公式,举例进一步说明读数方法:第一,威特T3经纬仪水平度盘读数方法,见图3-14。图3-14 威特T3经纬仪水平度盘读数第二,威特T2读数、蔡司010经纬仪水平度盘读数方法,见图3-15。图3-15 威特T2、蔡司010经纬仪水平度盘读数图3-16 新威特T2读数窗 另外,有些类型的经纬仪,虽然仍采用重合法读数,但读数窗中视场有所更新。图3-16就是新威特T2经纬仪度盘读数窗的视场。一看便知,读数应为94124。3.2.4 垂直度盘与垂直角 由3.1可知,垂直角是照准目标的视准线与相应的水平视线的夹角。为此,要测定垂直角,需要解决两个问题:一要求出视准线在垂直度盘上的读数;二要求出相应的水平视线在垂直度盘上的读数。垂直角的计算式可写成:=视准线在垂直度盘上的读数-水平视线在垂直度盘上的读数为了得到视准线在垂直度盘上的读数,在设计经纬仪时,将望远镜、垂直度盘均固定在水平轴上,并使水平轴与垂直度盘正交且通过其中心。这样,视准线在垂直度盘上的读数为一已知的定数;为了得到水平视线在垂直度盘上的读数,在垂直度盘上安置一个读数指标。用读数指标把水平视线在垂直度盘上的位置标示出来。这时,读数指标在垂直度盘上的读数就是水平视线在垂直度盘上的读数。由此可见,当俯仰望远镜照准目标后,其视准线在垂直度盘上的读数与其水平视线在垂直度盘上的读数之差,就是要测定的垂直角。这就是利用垂直度盘测定垂直角的基本原理。 由于垂直度盘、望远镜均固定在水平轴上,当垂直度盘的刻度确定之后,不论望远镜如何俯仰,照准目标后视准线在垂直度盘上的读数都是固定不变的。也就是说,视准线在垂直度盘上的读数取决于垂直度盘的刻划方法。 1. 垂直度盘刻划 垂直度盘的刻划方法随经纬仪类型不同而不同,刻划方法大致可分为两类:第一类,是在度盘的全周上沿逆时针方向由0到360,且使90到270分划线的连线与望远镜视准轴平行,如图3-17。盘左时,视准线在垂直度盘上的读数永为90;盘右时,永为270。威特T2、蔡司010型经纬仪都属于这一类。第二类,不是从0到360,而是从55到125,对径刻划(即相差180的刻划)注记相同。望远镜视准轴与对径读数均为90的刻划线平行。即不论盘左或盘右,视准线在垂直度盘上的读数永为90,如图3-18。图3-17 J2级经纬仪垂直度盘测角示意图图3-18 T3经纬仪垂直度盘测角示意图 2垂直度盘的指标水准器、自动归零装置 如前所述,水平视线在垂直度盘上的读数,是用读数指标把水平视线在垂直度盘上的正确位置确定下来。把读数指标在垂直度盘上的正确位置确定下来的方法目前有两种:符合水准器或自动归零装置。 (1)垂直度盘指标水准器光学经纬仪的垂直度盘指标水准器,一般都采用符合水准器,这样,既可提高气泡的安图3-19 符合水准器原理平精度,又便于观察,对于格值为10以上的水准器,其安平精度可提高23倍。符合水准器的原理见图3-19,它是利用两块棱镜1、2,使气泡的a、b两端经过二次反射后,符合在一个视场内。两块棱镜1、2的接触线cc 成为气泡的界线,再经过棱镜3放大为人眼看到。这种水准器叫做符合水准器。这样,在安置垂直度盘读数指标时,使读数指标与符合水准器的水准器轴重合,若两者不重合,校正符合水准器的改正螺旋,使它们重合,以此来达到垂直度盘读数指标保持水平。 (2)垂直度盘指标自动归零装置 近代一些先进的经纬仪,为了既保证垂直角观测的精度,又提高效率,采用指标自动归零(或称自动补偿)装置代替指标水准器。其目的仍然是:在进行垂直度盘读数时,使垂直度盘的读数指标保持水平状态。 各种垂直度盘读数指标自动归零装置都是利用重力使悬吊物体自然下垂,或使液面保持水平的原理,通过光学折射补偿的方法,达到垂直度盘读数指标自动归零的目的。目前采用的自动归零装置有三类:吊丝式自动归零装置、簧片式自动归零装置和液体式自动归零装置。带有垂直度盘读数指标自动归零装置的仪器,在测量垂直角时,因无须调整指标水准器符合,显得方便快捷多了。 3垂直角、指标差计算公式 我们知道,垂直角是视准线在垂直度盘上的读数与水平视线(即垂直度盘读数指标)读数之差。由于望远镜与垂直度盘固定在一起。这样,视准线在垂直度盘上的读数,将随着垂直度盘刻划方式的不同而不同,所以,其垂直角的计算公式也将不同。 (1)蔡司010和威特T2经纬仪垂直角、指标差计算公式此类仪器的垂直度盘刻划方式如图3-17(a)所示。其视准线在垂直度盘上的读数,盘左时为90(如图3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论