24.2 直线和圆的位置关系.doc_第1页
24.2 直线和圆的位置关系.doc_第2页
24.2 直线和圆的位置关系.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.2.2直线和圆的位置关系(第三课时)教学目标:技能与知识点:1理解直线与圆有相交、相切、相离三种位置关系2了解切线的概念,探索切线与过切点的直径之间的关系过程与方法:1经历探索直线与圆位置关系的过程,培养学生的探索能力2通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化情感与价值观:通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性在数学学习活动中获得成功的体验,建立自信心教学重点:经历探索直线与圆位置关系的过程理解直线与圆的三种位置关系教学难点:经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系教学过程一创设问题情境,引入新课师我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?生圆是平面上到定点的距离等于定长的所有点组成的图形即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内师本节课我们将类比地学习直线和圆的位置关系二新课讲解1复习:点到直线的距离的定义生从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离2探索直线与圆的三种位置关系师直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?生把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系师从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?生有三种位置关系:师直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangent line)当直线与圆有两个公共点时,叫做直线和圆相交当直线与圆没有公共点时,叫做直线和圆相离因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?生当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离师能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?生如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,dr;当直线与圆相切时,dr;当直线与圆相离时,dr,因此可以用d与r间的大小关系断定直线与圆的位置关系师由此可知:判断直线与圆的位置关系有两种方法一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定 (1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离(2)从点到直线的距离d与半径r的大小关系来判断:dr时,直线与圆相交;dr时,直线与圆相切;dr时,直线与圆相离3.相关例题讲解例RtABC,C=90,AC=3 cm,BC=4 cm,以 C 为圆心,r 为半径的圆与 AB 有怎样的位置关系?为什么?(1)r=2 cm;(2)r=2.4 cm;(3)r=3 cm分析:根据直线和圆的位置关系的数量特征,应该用圆心到直线的距离 d 与半径 r 的大小进行比较;关键是确定圆心 C 到直线AB 的距离 d,这个距离是多少呢?怎么求这个距离?解:过 C 作 CDAB,垂足为 D在 RtABC 中, AB=cm根据三角形面积公式有 CD AB=AC BCCD=(cm)即圆心 C 到 AB 的距离 d = 2.4cm(1)当 r = 2 cm 时, d r,C 与 AB 相离(2)当 r = 2.4 cm 时, d = r,C 与 AB 相切(3)当 r = 3 cm 时,d r,C 与 AB 相交三课堂练习练习1圆的直径是 13 cm,如果直线和圆心的距离分别是 4.5 cm; 6.5 cm; 8 cm,那么直线和圆分别是什么位置关系?有几个公共点? 练习2已知A 的直径为 6,点 A 的坐标为(-3,-4),则A 与 x 轴的位置关系是 相离 ,A 与 y 轴的位置关系是 相切 练习3已知O 到直线 l 的距离为 d,O 的半径为 r,若 d、r 是方程 x 2 - 7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论