全等三角形及性质.doc_第1页
全等三角形及性质.doc_第2页
全等三角形及性质.doc_第3页
全等三角形及性质.doc_第4页
全等三角形及性质.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全等三角形及其性质教学设计 丹凤县月日九年制学校:寇建婷内容与内容解析:全等三角形是八年级上册人教版数学教材第十二章第一节的教学内容。本节课是在学生掌握了三角形有关知识的基础上,重点研究了全等形、全等三角形的有关概念、表示方法及对应元素的关系。由于三角形是最基本的几何图形之一,所以理解和掌握全等三角形的有关概念是今后学习全等三角形的判定和应用的预备知识,还是证明角相等、线段相等的主要途径,因此本节内容在教材中处于非常重要的地位,起着承前启后的作用。在知识结构上,以后学习的几何图形很多要通过全等三角形来加以解决;在能力培养上,无论是逻辑思维能力、推理论证能力,还是分析问题解决问题的能力,都可在全等三角形教学中得以启迪和发展。因此,本小节的教学对全章乃至以后的学习都是至关重要的。教学目标解析知识与技能:掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的概念及表示方法。掌握全等三角形的性质。体会图形的变换思想,初步会用全等三角形的性质进行一些简单的计算。 过程与方法:围绕全等三角形的对应元素这一中心,设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,引入本节问题的主题,强化了本课的中心问题-全等三角形的性质,经历理解性质的过程。体会图形的变换思想,逐步培养学生动态研究几何图形的意识。情感、态度价值观:学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣教学重、难点本节课的教学重点是准确地在图形中识别出对应边、对应角以及全等三角形的性质和利用其基本性质进行一些简单的推理和计算。教学过程中利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点,本节课的教学难点就是能在全等变换中准确找到对应边和对应角。在对应边、对应角的识别、找寻中通过学生观察动画的演示,动手实践用学具自己摆放图形,学生分组讨论等形式使学生能直观地认识该知识点,化难为易,从而突破本节课的教学难点。教法:根据教学内容以 “概念 、性质 、应用”为侧重点 ,结合学生所具备的逻辑思维能力 ,本节课采用以启发式 、实验法为主 ,讨论法、的教学方法 。有机融合各种教法于一体,做到步步有序 ,环环相扣 ,不断引导学生动手 、动口、动脑。从以下两个方面着手:1、教学生观察、归纳的方法为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察认识实践再认识,完成认识上的飞跃。2、通过设疑,启发学生思考根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。学法:学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过课件演示,学生用学具操作体会,最终完成学习过程,达到教学目标。学生通过剪一剪、拼一拼、看一看等动手 、动脑的活动 ,使学生的主体地位得以充分体现。学生经历观察 、操作 、探究、归纳、总结等过程 ,获得用数学的思想方法处理问题的能力。1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。教学过程一 、创设情境,探究新知1、用课件展示几组图形,学生观察。2教师出示问题,学生思考。设计意图:本环节意在说明现实生活中存在着大量的形状、大小相同的图形.考虑到八年级学生的认知特点,在选材上注重从一般到特殊并运用贴近学生生活的图案激发学生探究的兴趣,由此说明数学来源于生活.二 自主探究,发现问题1 给出两个三角形,小组讨论,有何发现。(1)这两个三角形能够重合吗?学生观察思考(2) 两个完全重合的三角形叫什么?学生回答:全等形或者全等三角形教师引出:我们把能够完全重合的三角形叫做全等三角形。2教师讲解(1)能完全重合的图形叫全等形,特别得,能完全重合的三角形叫全等三角形。(2) 两个全等三角形重合时,互相重合的顶点叫对应点,能互相重合的边叫对应边,能互相重合的角叫对应角。(3)“全等”用“”表示,读作:“全等于”如 上面问题中ABC与ADE,可以记作:ABC“”ADE,注意:对应点写在对应位置上。 全等三角形的对应边相等,对应角相等。设计意图:巩固了全等形的概念,同时也为后面的内容作铺垫,通过学生的观察,教师及时给出对应边对应角的概念,让学生加深记忆和理解。三 动手操作,突破难点(平移、翻折、旋转)1并提出问题: 平移、翻折、旋转前后的两个三角形全等吗?2再让学生用课前自制的模型(全等三角形)亲自动手尝试图形全等变换的过程,进而得出图形变换的本质.(1) 将重合的两块全等三角形中一个三角形沿一边所在的直线移动,说出它们的对应顶点、对应边、对应角。 (2) 将重合的两块全等三角形中的一个以一边所在的直线为轴翻折,观察翻折后两个三角形的位置。说出它们的对应顶点、对应边、对应角。 (3) 将重合的两块全等三角形中的一个以某一个顶点为中心旋转0180度,说出它们的对应顶点、对应边、对应角。找对应边,对应角的方法。设计意图:让学生体会到平移、翻折、旋转前后的两个三角形全等这个结论是运用全等三角形的概念得出的,从而起到巩固新概念的作用,同时对学生在某些情况下确定全等三角形的对应元素有帮助.通过学生动手实践, 让学生形成直观感觉,从而分析总结出图形变换的本质,进一步加深对图形变换的理解,培养学生动态研究几何图形的意识.并由该组图形引出全等三角形对应元素及全等三角形的表示方法.在操作实践的过程中建立对应的概念.3师生归纳总结找对应边和对应角的方法:有公共边的,公共边是对应边;有公共角的,公共角是对应角;有对顶角的,对顶角是对应角;两个全等三角形最大的边是对应边,最小的边是对应边;两个全等三角形最大的角是对应角,最小的角是对应角;对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边所夹的角是对应角;可根据全等式找对应边和对应角。设计意图:及时归纳小结,帮助学生积累经验,使学生认知结构得以同化,从而提高学生的数学能力。四课堂练习1、全等用符号 表示,读作: 。 2、若 BCE CBF,则CBE= , BEC= ,BE= , CE= . 3、判断题 1)全等三角形的对应边相等,对应角相等。( ) 2)全等三角形的周长相等,面积也相等。 ( ) 3)面积相等的三角形是全等三角形。 ( ) 4)周长相等的三角形是全等三角形。 ( )设计意图:使学生掌握知识,形成技能,发展智力的重要手段,上述例题设计做到了有层次、有梯度、难易适当,从而使不同层次的学生都能主动参与并提出各自解决问题的方法. 4如图,ABCAED,AB是ABC的最大边,AE是AED的最大边, BAC 与 EAD对应角,且BAC=25,B=35,AB=3cm,BC=1cm,求出E, ADE的度数和线段DE,AE 的长度。设计意图运用全等三角形的性质对较复杂图形进行探究,初步培养学生综合运用知识的能力这是一个既具有弹性又能发展学生思维的题,可让不同层次的学生学有所获并使他们的能力得到提升. 五 课堂小结1能够完全重合的两个图形叫做全等形2 能够完全重合的两个三角形叫全等三角形,互相重合的顶点叫对应顶点,能够互相重合的边叫对应边,能够互相重合的角叫对应角3.“全等”用符号“ ”来表示,读作全等于4. 全等三角形的对应边相等;对应角相等5. 记两个三角形全等时要求把对应顶点的字母写在对应位置上。设计意图:归纳小结是巩固新知不可缺少的环节之一,此环节对培养学生的归纳能力、自我获取知识的能力和语言表达能力都十分重要.本节课我采用让学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论