




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章理想光学系统 共轴球面系统只有在近轴区才能成完善像 而对于宽光束 当u较大时 成像就不完善 存在像差 其它原因 1 光束太细 进入光学系统的能量太弱 成像太暗 2 只能对物面上很小的部分成像 不能反映全貌 只能对细光束成完善像的光学系统是无实用价值的 寻找一个能对较大范围 较粗光束及较宽波段范围都能成满意像的光学系统 就是应用光学所需要解决的中心问题 到哪里找这样的系统呢 为了揭示物 像 成像系统三者之间的内在联系 可暂时抛开成像系统的具体结构 将一般仅在光学系统近轴区存在的完善像拓展成在任意大的空间以任意宽光束都能完善成像的理想模型 即称为理想光学系统 又称为高斯光学系统 1841年由高斯提出 理想光组的成像作为衡量实际光学系统成像质量的标准 进行光学设计的时候 开始只是提出性能要求 如放大倍数等 这时 光组的具体参数是未知的 因此无法用近轴光学公式计算 为什么要研究理想光学系统 由理想光组所抽象出来的光学特征公式进行光组的初始计算 也就是以理想光组理论为基础 根据要求 寻找和确定一个能满足要求的光学系统的整体方案 称为光学系统的外形尺寸计算 也称轮廓计算 理想光组可有任意多个折 反射球面或多个光组组成 寻找理想光组的特征点 面就可以代表整个光组的光学特性 用以讨论成像规律 P A A P O1 Ok B C C B 理想光学系统 物像关系具有以下性质 1 物空间一个物点对应像空间中唯一的像点 这种一一对应关系称为共轭 这两个对应点称为共轭点 2 物空间中每一条直线对应于像空间中唯一相应直线 这两条直线称为共轭线 3 物空间中每一个平面对应于像空间中唯一平面 这两个面称为共轭面 4 如果物空间任意一点D位于直线BC上 那么其在像空间的像D 也必位于BC的共轭线B C 上 D D 第一节共线成像理论 把这种点对应点 直线对应直线 平面对应平面的成像变换称为共线成像 上述定义称为共线成像理论 二 共轴理想光学系统的成像性质 过主光轴的一个截面 1 位于光轴上物点的共轭像点必然在光轴上 位于过光轴的某一截面内的物点对应的共轭像点必位于该平面的共轭像面内 过光轴的任意截面成像性质都相同 2 垂直于光轴的物平面 其共轭像平面也必然垂直于光轴 且平面物与其共轭平面像的几何形状完全相似 即 在垂直于光轴的同一平面内 物体的各部分具有相同的放大率 1 已知两对共轭面的位置和放大率 利用光轴上的已知共轭点 由已知共轭面的放大率确定出射光线的方向 B A A B 3 一个共轴理想光学系统 如果已知两对共轭面的位置和放大率 或者一对共轭面的位置和放大率 以及轴上两对共轭点的位置 则其它一切物点的共轭像点都可以根据这些已知的共轭面和共轭点来表示 2 已知一对共轭面的位置和放大率 以及轴上另外两对共轭点的位置 O O 利用光轴上的已知共轭点 由已知共轭面的放大率确定出射光线的方向 A B A B 第二节理想光学系统的基点与基面 共轴球面系统 球面的曲率中心在同一轴线上的光学系统 只要找到相邻球面之间的关系 就可以解决整个光学系统的光路计算问题 问题就是这么简单 前面讨论的单个折射球面的光路计算及成像特性 对构成光学系统的每个球面都适用 理想光组有一些特殊的点和平面 利用它们来讨论光组的成像特性 可以使问题大大的简化 表征光组特性的点 面称为基点和基面 共轴理想光学系统的基点和基面 一 无限远轴上物点发出的光线 h是轴上物点A发出的一条入射光线的投射高度 由三角关系 当即物点向无限远处左移时 由于任何光学系统口径有限 所以此时 即无限远轴上物点发出的光线与光轴平行 二 像方焦点 像方焦平面 像方主点 主平面 像方焦距 A F 就是无限远轴上物点的像点 称像方焦点 AE是一条平行于光轴的入射光线 它通过理想光学系统后 出射光线E F 交光轴于F 过F 点作垂直于光轴的平面 称为像方焦平面 它是无限远处垂直于光轴的物平面的共轭像平面 将AE延长与出射光线E F 的反向延长线交于Q 通过Q 点作垂直于光轴的平面交光轴于H 点 则Q H 平面称为像方主平面 H 称为像方主点 A U F E Q H 从像方主点H 到像方焦点F 之间的距离称为像方焦距 用f 表示 f 也遵从符号规则 它的起始原点是像方主点H 根据三角关系 有 A U F E h E Q H f w 三 无限远轴外物点发出的光线 F 无限远轴外物点发出的能够进入光学系统的光线总是相互平行的 光线与光轴有一定的夹角 用w表示 这样一束平行光线经过理想光组后 一定相交于像方焦平面上的某一点 这一点就是无限远轴外物点的共轭像 四 物方焦点 物方焦平面 物方主点 主平面 物方焦距 E h F U E 如果轴上某一点F的共轭像点在无限远处 即由F发出的光线经光组后与光轴平行 则F称为系统的物方焦点 B Q 则QH平面称为物方主平面 H点称为物方主点 从物方主点H到物方焦点F之间的距离称为物方焦距 用f表示 f也遵从符号规则 它的起始原点是物方主点H 这里为 f E h F U E H f B 五 物方主平面与像方主平面之间的关系 光学系统 E1 Ek B A O1 OK P1 Pk F F Q Q H H f f h h 入射高度为h的AE1的延长线与PkF 的反向延长线决定了Q 根据光路的可逆性 入射高度同样为h的BEk的延长线和P1F的反向延长线交于Q 由于这两组光线是共轭的 所以Q与Q 点必是共轭点 QH与Q H 也是一对共轭面 结论 主平面的横向放大率为 1 在追迹光线时 出射光线在像方主平面上的投射高度一定与入射光线在物方主平面上的投射高度相等 四 实际光学系统的基点位置和焦距计算 例 三片型照相物镜 1 结构参数 方法 在近轴区追迹平行于光轴的光线 2 求物镜像方焦距 像方焦点 像方主点 起始坐标 用六次近轴光线的光路计算公式和过渡公式求像距和倾角 像方焦距 像方主点 像距和倾角 注 l或l 都是以球面顶点为起算原点 3 求物镜物方焦距 物方焦点 物方主点 起始坐标 物距和倾角 物方焦距 物方主点 物方焦点位置 计算结果的有关问题 解法2 第三节理想光学系统的物像关系 已知一个理想光学系统的主点和焦点的位置 利用光线通过它们后的性质 对物空间给定的点 线 面通过画图追踪典型光线求像 称为图解法求像 1 可供选择的典型光线和可供利用的性质有 1 平行于光轴入射的光线 经过系统后过像方焦点 F H H 2 过物方焦点的光线 经过系统后平行于光轴 F H H 3 倾斜于光轴的平行光线 经过系统后交于像方焦平面上某一点 4 自物方焦平面上一点发出的光束经系统后成倾斜于光轴的平行光束 H H 5 共轭光线在主平面上的投射高度相等 即一对主平面的横向放大率为 1 1 轴外点成像 2 依据 理想的成像情况下 从一点发出的一束光线经光学系统作用后仍交于一点 3 方法 求物点发出的两条特定光线在像方空间的光线 二者的交点为共轭像点 利用典型光线 主面性质 2 轴上物点成像 利用焦平面的性质 解法1 解法2 a 3 轴上物点 经两个光具组成像 b d c 实物成放大正立虚像 同侧 A F F H H B 2F 2F A B 例 已知理想光组的物方焦点F和像方焦点F 求物AB的像 A B F F H H A B 求像 x 以物方焦点为原点的物距 称为焦物距 以F为起始点 x方向与光线方向一致为正 图中为 x 以像方焦点为原点的像距 称为焦像距 以F 为起始点 x 方向与光线方向一致为正 图中为 l 物方主点H为原点的物距 称为主物距 方向与光线方向一致为正 反之为负 图中 l 像方主点H 为原点的像距 称为主像距 方向与光线方向一致为正 反之为负 图中 一 牛顿公式 由相似三角形BAF和FHR可得 由相似三角形Q H F 和F A B 由以上两式得 以焦点为原点的物像位置公式 通常称为牛顿公式 一 牛顿公式 二 高斯公式 物像位置也可相对主点的位置来确定 相应位置公式推导如下 代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能仓储物流自动化分拣线建设的技术创新与产业竞争力提升策略研究报告
- 2025【企业劳动合同范本】劳动合同范本
- 2025品牌奶茶加盟合同范本
- 21.2 一元二次方程的解法教学设计-2025-2026学年初中数学沪教版五四制2024八年级上册-沪教版五四制2024
- 3.3.2合并同类项 说课稿2024-2025学年苏科版(2024)数学七年级上册
- 中级社工术语考试题库及答案
- 中级电工考试题目及答案
- 中国近代外交高考试题及答案
- 职专汽修考试题库及答案
- 伊朗教学课件
- 农业现代化种植技术培训课件
- 中城汽车(山东)有限公司审计报告
- 董事会基础知识培训总结课件
- 2025版煤矿安全规程宣贯培训课件
- (教科2024版)科学三年级上册2.1 水到哪里去了 课件(新教材)
- (2025秋新版)青岛版科学三年级上册全册教案
- 上锁挂牌管理培训课件
- 节能减排培训课件
- 葡萄冷藏保鲜技术规程
- 顾客联络服务 人工与智能客户服务协同要求 编制说明
- 以人为本的医院护理服务体系构建
评论
0/150
提交评论