代数式求值的常用方法.doc_第1页
代数式求值的常用方法.doc_第2页
代数式求值的常用方法.doc_第3页
代数式求值的常用方法.doc_第4页
代数式求值的常用方法.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

代数式求值的常用方法一、化简代入法化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值.例1先化简,再求值:,其中,.二、整体代入法当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值.例2已知,求的值 例3若,则 .三、赋值求值法赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围.例4先化简,然后选择一个你最喜欢的的值,代入求值四、倒数法倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法.例5若的值为,则的值为( ).五、主元代换法所谓主元法就是把条件等式中某一个未知数(元)视为常数,解出其余未知数(主元),再代入求值的一种方法.例6已知,则的值_.六、配方法通过配方,把已知条件变形成几个非负数的和的形式,利用“若几个非负数的的和为零,则每个非负数都应为零”来确定字母的值,再代入求值.例7若,且,则_1已知:a、b、c是三角形的三边,试比较与的大小2已知a、b、c是的三边长,且满足,求中最大边c的取值范围七、数形结合法在数学研究中,数是形的抽象概括,形是数的直观表现。数形结合法是指根据题目中的数或形的意义,利用“式结构”或“形结构”的特点及其相互转化,达到求值的一种方法.例8如图1,数轴上点表示,点关于原点的对称点为,设点所表示的数为,求的值例9如图2,一次函数的图象经过点和,则的值为_八、利用根与系数的关系如果代数式可以看作某两个“字母”的轮换对称式,而这两个“字母”又可以看作某个一元二次方程的根,可以先用根与系数的关系求得其和、积式,再整体代入求值. 当所求的代数式不是轮换对称式,可根据其特点构造对称式或利用方程根的定义综合求值.例10一元二次方程的两个根分别是,则的值是( ).例11如果是一元二次方程的两个根,那么的值是_九、特殊值法有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单.例12若,则的值为_.设,求:(1);(2);(3)十、常值代换法常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值.例13已知实数满足:,那么的值为_十一、分式加减的特殊解法逐步合并: 分组结合: 裂项合并: 练习:1 已知,那么_2 已知实数满足,则代数式的值为_3如图3,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为,则+=_.4已知是方程的两个根,则代数式的值是( ).A37 B26 C13 D105已知a、b为一元二次方程的两个根,那么的值为( ). A-7 B0 C7 D116先化简后求值: , 其中7 请将下面的代数式尽可能化简,再选择一个你喜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论