多相流模型经验谈.doc_第1页
多相流模型经验谈.doc_第2页
多相流模型经验谈.doc_第3页
多相流模型经验谈.doc_第4页
多相流模型经验谈.doc_第5页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档多相流模型经验谈多相流的介绍:Currently there are two approaches for the numerical calculation of multiphase flows: the Euler-Lagrange approach and the Euler-Euler approach.The Euler-Lagrange Approach:The Lagrangian discrete phase model in FLUENT follows the Euler-Lagrange approach, this approach is inappropriate for the modeling of liquid-liquid mixtures, fluidized beds, or any application where the volume fraction of the second phase is not negligible.The Euler-Euler Approach: In FLUENT, three different Euler-Euler multiphase models are available: the volume of fluid (VOF) model, the mixture model, and the Eulerian model.1)The VOF Model: it is designed for two or more immiscible fluids where the position of the interface between the fluids is of interest. Applications of the VOF model include stratified flows, free-surface flows, filling, sloshing, the motion of large bubbles in a liquid, the motion of liquid after a dam break, the prediction of jet breakup (surface tension), and the steady or transient tracking of any liquid-gas interface. 2) Mixture model:Applications of the mixture model include particle-laden flows with low loading, bubbly flows, sedimentation, and cyclone separators. The mixture model can also be used without relative velocities for the dispersed phases to model homogeneous multiphase flow.3)Applications of the Eulerian multiphase model include bubble columns, risers, particle suspension, and fluidized beds.离散相模型(离散相的装载率1012%)求解参数的设定:Options for Interaction with Continuous Phase:For steady-state simulations, increasing the Number of Continuous Phase Iterations per DPM Iteration will increase stability but require more iterations to converge.Update DPM Sources Every Flow Iteration is recommended when doing unsteady simulations; at every DPM Iteration, the particle source terms are recalculated.Length Scale: controls the integration time step size used to integrate the equations of motion for the particle.A smaller value for the Length Scale increases the accuracy of the trajectory and heat/mass transfer calculations for the discrete phase.Length Scale factor: A larger value for the Step Length Factor decreases the discrete phase integration time step.颗粒积分方法:numerics叶中tracking scheme选项1)implicit uses an implicit Euler integration of Equation 23.2-1 which is unconditionally stable for all particle relaxation times.2)trapezoidal uses a semi-implicit trapezoidal integration.(梯形积分)3)analytic uses an analytical integration of Equation 23.2-1 where the forces are held constant during the integration.4)runge-kutta facilitates a 5th order Runge Kutta scheme derived by Cash and Karp 47.You can either choose a single tracking scheme, or switch between higher order and lower order tracking schemes using an automated selection based on the accuracy to be achieved and the stability range of each scheme.Max. Refinements is the maximum number of step size refinements in one single integration step. If this number is exceeded the integration will be conducted with the last refined integration step size.Automated Tracking Scheme Selection provides a mechanism to switch in an automated fashion between numerically stable lower order schemes and higher order schemes, which are stable only in a limited range. In situations where the particle is far from hydrodynamic equilibrium, an accurate solution can be achieved very quickly with a higher order scheme, since these schemes need less step refinements for a certain tolerance. When the particle reaches hydrodynamic equilibrium, the higher order schemes become inefficient since their step length is limited to a stable range. In this case, the mechanism switches to a stable lower order scheme and facilitates larger integration steps.Including a Coupled Heat-Mass Solution on the Particles:This increased accuracy, however, comes at the expense of increased computational expense.非稳态跟踪1)连续相稳态离散相非稳态:you simply enter the Particle Time Step Size and the Number of Time Steps, thus tracking particles every time a DPM iteration is conducted. When you increase the Number of Time Steps, the droplets penetrate the domain faster.2)连续离散相都为非稳态:When solving unsteady equations for the continuous phase, you must decide whether you want to Use Fluid Flow Time Step to inject the particles, or whether you prefer a Particle Time Step Size independent of the fluid flow time step. With the latter option, you can use the Discrete Phase Model in combination with changes in the time step forthe continuous equations, as it is done when using adaptive flow time stepping.随机轨道模型的参数:number of tries:An input of zero tells FLUENT to compute the particle trajectory based on the mean continuous phase velocity field (Equation 23.2-1), ignoring the effects of turbulence on the particle trajectories. An input of 1 or greater tells FLUENT to include turbulent velocity fluctuations in the particle force balance as in Equation 23.2-20.If you want the characteristic lifetime of the eddy to be random (Equation 23.2-32), enable the Random Eddy Lifetime option. You will generally not need to change the Time Scale Constant (CL in Equation 23.2-23) from its default value of 0.15, unless you are using the Reynolds Stress turbulence model (RSM), in which case a value of 0.3 is recommended.液滴颗粒碰撞与破碎碰撞:破碎:有两种模型,TAB 模型适合低韦伯数射流雾化以及低速射流进入标态空气中的情况。对韦伯数大于100 的情况,波动模型适应性较好。在高速燃料射流雾化中,波动模型应用甚广。对于TAB 模型,用户需要在y0 文本框中设定y0的值。The default value (y0 = 0) is recommended.对于Y波动模型,需要输入B0与B1,you will generally not need to modify the value of B0, as the default value 0.61 is acceptable for nearly all cases. A value of 1.73 is recommended for B1.颗粒类型中的燃烧类型燃烧(combusting)颗粒是一种固体颗粒,它遵从由方程19.2-1 所确定的受力平衡、由定律1 所确定的加热冷却过程、由定律4 所确定的挥发份析出过程(19.3.5 节)以及由定律5 所确定的异相表面反应机制(19.3.6 节)。最后,当颗粒的挥发份完全析出之后,非挥发份的运动、变化由定律6 所确定。在Set Injection Properties panel 面板中选定Wet Combustion 选项,用户可以在燃烧颗粒中包含有可蒸发物质。这样,颗粒的可蒸发物质可在挥发份开始析出之前,经历由定律2、3 所确定的蒸发与沸腾过程.若定义的是Combusting 燃烧类型颗粒,可在Devolatilizing Species 下拉列表框下选定由挥发份析出定律4 确定的气相组分,参与焦炭表面燃烧反应(定律5)的气相组分列于Oxidizing Species(氧化剂组分)列表中,有表面反应生成的气相组分则列于ProductSpecies(生成物组分)列表中。需要注意的是,对于选定的燃烧颗粒介质,如果燃烧模型为multiple-surface -reaction 多表面异相反应模型,那么,由于化学反应计量比在混合介质中已经被确定,所以Oxidizing Species 与Product Species 列表将变灰(不可选)。液滴喷射类型平面雾化模型的输入l 位置:在X-, Y-, and Z-Position 文本框区可以设定射流的沿直角坐标的三向位置(在三维情况下才会有Z-Position 出现)l 速度:在X-, Y-, and Z- Velocity 文本框区可以设定射流初始速度沿直角坐标的三向分量(在三维情况下才会有Z- Velocity 出现)l 轴的方向(仅适用于三维):设定确定喷嘴轴线方向的三个分量,在X-Axis, Y-Axis, and Z-Axis 区设定。l 温度:在Temperature 区可设定喷射颗粒流的初始颗粒(绝对)温度。l 质量流率:可在Flow Rate 区设定喷嘴的的颗粒质量流量。l 射流持续时间:对于非稳态颗粒跟踪计算(请参阅19.8 节),在Start Time 和Stop Time 区设定喷射的开始于结束时间。l 蒸气压:设定控制通过喷嘴内部流动的蒸气压(表19.4.1 中的pv ),在Vapor Pressure 区设定。l 直径:设定喷嘴直径(表19.4.1 中的d ),在Injector Inner Diam.区设定。l 喷嘴长度:设定喷嘴的长度(表19.4.1 中的L ),在Orifice Length 区设定。l 内台阶角半径(导角半径):设定喷嘴内台阶处的导角半径(表19.4.1 中的r ),在CornerRadius of Curv.区设定。l 喷嘴参数:设定射流角修正系数(方程19.4-16 中的 CA ),在Constant A 区设定。CA=3+L/3.6/d,喷射角度的大小强烈依赖于喷嘴的内部流动。因此,对于空穴喷嘴,用户设定的CA 值应该比单相流的要小才可以。CA 的常见取值范围为4.06.0。返流喷嘴的喷射角度更小l 方位角:设定三维情况下的喷嘴方位开始角与结束角,在Azimuthal Start Angle and Azimuthal Stop Angle 区设定。压力旋流雾化喷嘴的点属性设定(气体透平工业的人把它称作单相喷嘴(simplex atomizer)。这种喷嘴,然后流体通过一个称作旋流片的喷头被加速后,进入中心旋流室。在旋流室内,旋转的液体被挤压到固壁,在流体中心形成空气柱,然后,液体以不稳定的薄膜状态从喷口喷出,破碎成丝状物及液滴。)l 射流角:在Spray Half Angle 区下设定射流喷射半角(方程19.4-25 中的 )。l 压力:在Upstream Pressure 区下设定喷嘴上游压力(表19.4.1 中的p1 )。l 液膜破碎常数:设定确定液膜破碎时形成的线状液膜长度的一个经验常数(方程19.4-30中的ln(b/0),在Sheet Constant 设定。ln(b/0)为312 的经验常数。这个值必须由用户设定,其缺省值为12 with experimental sheet breakup lengths over a range of Weber numbers from 2 to 200.l 线状液膜直径:对于短波,确定液膜破碎波长与线状液膜半径之间的线形比例关系的比例常数,在Ligament Constant 区设定。where CL, or the ligament constant, is equal to 0.5 by default.空气辅助雾化喷嘴的点属性设定(为了加速液膜的破碎,喷嘴经常会添加上辅助空气。液体通过喷座的作用形成液膜,空气则直接冲击液膜以加速液膜的破碎。)l 喷嘴外半径:在Injector Outer Diam. 区下设定射流的外部半径。此数值与喷嘴内部半径共同确定了液膜厚度(方程19.4-22 中的t )。l 射流角:设定射流离开喷口时的液膜初始轨道(方程19.4-25 中的 ),在Spray Half Angle 区设定。l 相对速度:设定液膜与空气之间的最大相对速度,在Relative Velocity 区设定。l 液膜破碎常数:设定确定液膜破碎时形成的线状液膜长度的一个经验常数(方程19.4-30中的ln(b/0),在Sheet Constant 区设定。l 线状液膜直径:对于短波,确定液膜破碎波长与线状液膜半径之间的线形比例关系的比例常数,在Ligament Constant 区设定。where CL, or the ligament constant, is equal to 0.5 by default.平板扇叶雾化喷嘴的点属性设定(液体从宽而薄的喷口出来后形成平面液膜,继而破碎成液滴。只有在三维的情况下才可以使用这个模型)l 扇叶中心点:设定射流源起始位置的三向坐标值(请参阅图19.4.6),在X-Center,Y-Center, and Z-Center 区设定。l 虚点位置:设定喷嘴扇叶的各边的虚拟交叉点(请参阅图19.4.6),在X-Virtual Origin, Y-Virtual Origin, and Z-Virtual Origin 区设定。l 垂直方向:设定垂直扇叶的向量的各个分量,在X-Fan Normal Vector, Y-Fan Normal Vector, and Z-Fan Normal Vector 区设定。l 温度:设定颗粒流的温度,在Temperature 区设定。l 质量流量:设定喷嘴的质量流量,在Flow Rate 区设定。l 射流持续时间:对于非稳态颗粒跟踪计算(请参阅19.8 节),在Start Time 和Stop Time 区设定喷射的开始于结束时间。l 射流角:在Spray Half Angle 区下设定射流喷射半角。l 喷口宽度:设定喷口垂直方向的宽度,在Orifice Width 区设定。l 液膜破碎常数:设定确定液膜破碎时形成的线状液膜长度的一个经验常数(请参阅方程19.4-30的ln(b/0),在Flat Fan Sheet Constant 区设定。气泡雾化喷嘴的点属性设定(,液体中混合了过热液体或者类似的介质。当挥发性液体从喷口喷出时,迅速发生相变。相变使流体迅速以很大的分散角破碎成小液滴。此模型也适用于热流体射流。)混合情况参数:设定射流中液气混合物中已蒸发的液滴质量分数(方程19.4-38 中的x ),在Mixture Quality 区设定。l 饱和温度:设定可挥发成分的饱和温度,在Saturation Temp.区设定。l 液滴扩散系数:设定控制液滴在空间扩散性能的扩散系数(方程19.4-38 中的 Ceff ),在Dispersion Constant 区设定。l 射流角:设定液膜离开喷口时的初始轨道方向角,在Maximum Half Angle 区设定。通用多相流模型mixture model VS euler model1)If there is a wide distribution of the dispersed phases (i.e., if the particles vary in size and the largest particles do not separate from the primary flow field), the mixture model may be preferable (i.e., less computationally expensive). If thedispersed phases are concentrated just in portions of the domain, you should use the Eulerian model instead. If interphase drag laws that are applicable to your system are available (either within FLUENT or through a user-defined function), the Eulerian model can usually provide more accurate results than the mixture model. Even though you can applythe same drag laws to the mixture model, as you can for a non-granular Eulerian simulation, if the interphase drag laws are unknown or their applicability to your system is questionable, the mixture model may be a better choice. For most caseswith spherical particles, then the Schiller-Naumann law is more than adequate. For cases with non-spherical particles, then a user-defined function can be used.加快收敛求解策略You can increase the size of the time step after performing a few time steps. For steady solutions it is recommended that you start with a small under-relaxation factor for the volume fraction, Another option is to start with a mixture multiphase calculation, and then switch to the Eulerian multiphase model.VOF模型界面之间的scalar梯度不要太大界面插值:there are four scheme for interface interpolation:geometric reconstruction, donor-acceceptor, euler explicit, inexplicit,The geometric reconstruction scheme represents the interface between fluids using a piecewise-linear approach. In FLUENT this scheme is the most accurate and is applicable for general unstructured meshes. the donor-acceptor scheme can be used only with quadrilateral or hexahedral meshes.The implicit scheme can be used for both time-dependent and steady-state calculations.Euler model中的附加作用力Lift Forces:In most cases, the lift force is insignificant compared to the drag force, so there is noreason to include this extra term. If the lift force is significant (e.g., if the phases separatequickly), it may be appropriate to include this term.The virtual mass effect is significant when the secondary phase density is much smaller than the primary phase density (e.g., for a transient bubble column). By default, virtual mass effect is not included.多相湍流模型k-e modelk-e mixture model(default) it is applicable when phases separate, for stratified (or nearly stratified) multiphase flows, and when the density ratio between phases is close to 1.,它应用于相分离,分层(或接近分层)的多相流,和相之间的密度比接近1。The dispersed turbulence model is the appropriate model when the concentrations of the secondary phases are dilute. In this case, interparticle collisions are negligible and the dominant process in the random motion of the secondary phases is the influence of the primary-phase turbulence.当明显地有一个主连续相和其它的是分散稀释的第二相时,这个模型是适用的。The drift velocity results from turbulent fluctuations in the volume fraction.This correction is not included, by default, but youcan enable it during the problem setup(define modelmultiphases-option).k-e Turbulence Model for Each Phase:This turbulence model is the appropriate choice when the turbulence transfer among the phases plays a dominant role.RSM modelMultiphase turbulence modeling typically involves two equation models that are based on single-phase models and often cannot accurately capture the underlying flow physics.there are two options for Rsm model, mixture and dispersed turbulence model.Wet Steam Model通用多相流模型的输入:1)vof modelnumber of phases:VOF formulation: 1)Time-dependent with the geometric reconstruction interpolation scheme: This formulation should be used whenever you are interested in the time-accurate transient behavior of the VOF solution. 2)Time-dependent with the donor-acceptor interpolation scheme: This formulation should be used instead of the time-dependent formulation with the geometric reconstruction scheme if your mesh contains highly twisted hexahedral cells. For such cases, the donor-acceptor scheme may provide more accurate results. 3)Time-dependent with the Euler explicit interpolation scheme: Since the donoracceptor scheme is available only for quadrilateral and hexahedral meshes, it cannot be used for a hybrid mesh containing twisted hexahedral cells. For such cases, you should use the time-dependent Euler explicit scheme.While the Euler explicit time-dependent formulation is less computationally expensive than the geometric reconstruction scheme, the interface between phases will not be as sharp as that predicted with the geometric reconstruction scheme. To reduce this diffusivity, it is recommended that you use the second-order discretization scheme for the volume fraction equations. 4)Time-dependent with the implicit interpolation scheme: This formulation can be used if you are looking for a steady-state solution and you are not interested in the intermediate transient flow behavior, but the final steady-state solution is dependent on the initial flow conditions and/or you do not have a distinct inflow boundary for each phase. 5)Steady-state with the implicit interpolation scheme: This formulation can be used if you are looking for a steady-state solution, you are not interested in the intermediate transient flow behavior, and the final steady-state solution is not affected by the initial flow conditions and there is a distinct inflow boundary for each phase. Note that the implicit modified HRIC scheme can be used as a robust alternative to the explicit geometric reconstruction scheme.Including Body Forces:In many cases, the motion of the phases is due, in part, to gravitational effects. To include this body force, turn on Gravity in the Operating Conditions panel and specify the Gravitational Acceleration. For VOF calculations, you should also turn on the Specified Operating Density option in the Operating Conditions panel, and set the Operating Density to be the density of the lightest phase. If any of the phases is compressible, set the Operating Density to zero.Modeling Open Channel Flows:FLUENT can model the effects of open channel flow (e.g., rivers, dams, and surfacepiercing structures in unbounded stream) using the VOF formulation and the open channel boundary condition. the steps to open open channel flows are:1. Turn on gravity 2. Enable the volume of fluid model and select Open Channel Flow.boundary conditions setting for open channel flow: 1)Determining the Free Surface Level(ylocal) We can simply calculate the free surface level in two steps: 1. Determine the absolute value of height from the free surface to the origin in thedirection of gravity. 2. Apply the correct sign based on whether the free surface level is above or below the origin. If the liquids free surface level lies above the origin, then the Free Surface Level is positive (see Figure 24.8.2). Likewise, if the liquids free surface level lies below the origin, then the Free Surface Level is negative. 2)Determining the Bottom Level(ybottom): We can simply calculate the bottom level in two steps: 1. Determine the absolute value of depth from the bottom level to the origin in the direction of gravity. 2. Apply the correct sign based on whether the bottom level is above or below the origin. 3)Specifying the Total Height ytot = ylocal+V*V/2/g 4)Determining the Velocity Magnitude(appear in the pressure inlet) This is to be specified as the magnitude of the upstream inlet velocity in the flow 5)Determining the Secondary Phase for the Inlet Consider a problem involving a three-phase flow consisting of air as the primary phase, and oil and water as the secondary phases. Consider also that there are two inlet groups:1. water and air 2. oil and air; For the first inlet group, you would choose water as the secondary phase. For the second inlet group, you would choose oil as the secondary phase.liminations of channel flow:Limitations:The following list summarizes some issues and limitations associated with the open channel boundary condition.1. The conservation of the Bernoulli integral does not provide the conservation of mass flow rate for the pressure boundary. In the case of a coarser mesh, there can be a significant difference in mass flow rate from the actual mass flow rate. Forfiner meshes, the mass flow rate comes closer to the actual value. So, for problems having constant mass flow rate, the mass flow rate boundary con

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论