全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用直线参数方程t的几何意义1、 直线参数方程的标准式(1)过点P0(),倾斜角为的直线的参数方程是 (t为参数)t的几何意义:t表示有向线段的数量,P() P0P=t P0P=t 为直线上任意一点. (2)若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2=t2t1 P1P2=t 2t 1 (3) 若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3 则P1P2中点P3的参数为t3,P0P3= (4)若P0为P1P2的中点,则t1t20,t1t20时,点P在点P0的上方; 当t0时,点P与点P0重合; 当t0时,点P在点P0的右侧; 当t0时,点P与点P0重合;yh0hPP0h 当t0时,点P在点P0的左侧;问题2:直线上的点与对应的参数t是不是一 对应关系? 我们把直线看作是实数轴, 以直线向上的方向为正方向,以定点P0 为原点,以原坐标系的单位长为单位长, 这样参数t便和这条实数轴上的点P建立了 一一对应关系.问题3:P1、P2为直线上两点所对应的参数分别为t1、t2 , 则P1P2?,P1P2=? P1P2P1P0P0P2t1t2t2t1,P1P2= t2t1问题yh0hP1P0hP24:若P0为直线上两点P1、P2的中点,P1、P2所对应的 参数分别为t1、t2 ,则t1、t2之间有何关系? 根据直线参数方程t的几何意义, P1Pt1,P2Pt2,P0为直线 上两点P1、P2的中点,|P1P|P2P| P1PP2P,即t1t2, t1t20 一般地,若P1、P2、P3是直线上的点, 所对应的参数分别为t1、t2、t3,P3为P1、P2的中点 则t3 (P1P3P2P3, 根据直线参数方程t的几何意义, P1P3= t3t1, P2P3= t3t2, t3t1=(t3t2,) )性质一:A、B两点之间的距离为,特别地,A、B两点到的距离分别为性质二:A、B两点的中点所对应的参数为,若是线段AB的中点,则,反之亦然。 在解题时若能运用参数t的上述性质,则可起到事半功倍的效果。应用一:求距离例1、直线过点,倾斜角为,且与圆相交于A、B两点。(1)求弦长AB.(2)求和的长。解:因为直线过点,倾斜角为,所以直线的参数方程为,即,(t为参数),代入圆方程,得,整理得(1)设A、B所对应的参数分别为,所以,所以(2)解方程得,所以,应用二:求点的坐标例2、直线过点,倾斜角为,求出直线上与点相距为4的点的坐标。解:因为直线过点,倾斜角为,所以直线的参数方程为,即,(t为参数), (1)设直线上与已知点相距为4的点为M点,且M点对应的参数为t,则,所以,将t的值代入(1)式,当t4时,M点的坐标为;当t4时,M点的坐标为,综上,所求M点的坐标为或. 点评:若使用直线的普通方程,利用两点间的距离公式求M点的坐标较麻烦,而使用直线的参数方程,充分利用参数t的几何意义求M点的坐标较容易。应用三:解决有关弦的中点问题例3、过点,倾斜角为的直线和抛物线相交于A、B两点,求线段AB的中点M点的坐标。解:直线过点,倾斜角为,所以直线的参数方程为,(t为参数),因为直线和抛物线相交,将直线的参数方程代入抛物线方程中,得:,整理得,设这个二次方程的两个根为,由韦达定理得,由M为线段AB的中点,根据t的几何意义,得,易知中点M所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司运营部主管工作计划及运营管理方案
- 亲子教育沟通技巧及儿童成长规划方案
- 产品经理产品需求管理方案
- 区块链技术在供应链管理中的实施方案
- 冶金安全工程师企业安全文化建设方案
- 医疗急救员职业倦怠预防与干预方案
- 企业危机预警及应对方案
- 公路运输质检员培训效果评估方案
- 企业内部管理制度与流程优化方案
- ESG沟通专员ESG沟通专员沟通案例
- 旅游图像数据分析与深度学习应用-洞察及研究
- 2025年检验三基考试试题及答案
- 2026年太原城市职业技术学院单招综合素质考试题库及答案1套
- 危重患者的管道护理管理
- 反循环钻机行业发展趋势及投资市场分析报告2025年
- 学校食堂员工消防培训
- 家庭用电安全教育课件
- 职业生涯的评估与修正
- 2025河北秦皇岛市抚宁区为乡镇街道和区直单位选调全额事业人员68人笔试考试备考试题及答案解析
- 中小学英语衔接教学策略
- 015《煤矿安全规程》修改条款学习辅导:第十五讲 电气
评论
0/150
提交评论