03 Atomic Theory 无机化学.ppt_第1页
03 Atomic Theory 无机化学.ppt_第2页
03 Atomic Theory 无机化学.ppt_第3页
03 Atomic Theory 无机化学.ppt_第4页
03 Atomic Theory 无机化学.ppt_第5页
已阅读5页,还剩139页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chemistry AtomsFirstJuliaBurdge JasonOverby QuantumTheoryandtheElectronicStructureofAtoms QuantumTheoryandtheElectronicStructureofAtoms 3 1EnergyandEnergyChangesFormsofEnergyUnitsofEnergy3 2TheNatureofLightPropertiesofWavesTheElectromagneticSpectrumTheDouble SlitExperiment3 3QuantumTheoryQuantizationofEnergyPhotonsandthePhotoelectricEffect3 4Bohr sTheoryoftheHydrogenAtomAtomicLineSpectraTheLineSpectrumofHydrogen3 5WavePropertiesofMatterThedeBroglieHypothesisDiffractionofElectrons3 6QuantumMechanicsTheUncertaintyPrincipleTheSchr dingerEquationTheQuantumMechanicalDescriptionoftheHydrogenAtom QuantumTheoryandtheElectronicStructureofAtoms 3 7QuantumNumbersPrincipalQuantumNumber n AngularMomentumQuantumNumber l MagneticQuantumNumber ml ElectronSpinQuantumNumber ms 3 8AtomicOrbitalssOrbitalspOrbitalsdOrbitalsandotherHigh EnergyOrbitalsEnergiesofOrbitals3 9ElectronConfigurationEnergiesofAtomicOrbitalsinMany ElectronSystemsThePauliExclusionPrincipleAufbauPrincipleHund sRuleGeneralRulesforWritingElectronConfigurations3 10ElectronConfigurationsandthePeriodicTable EnergyandEnergyChanges Energyisthecapacitytodoworkortransferheat Allformsofenergyareeitherkineticorpotential Kineticenergy Ek istheenergyofmotion misthemassoftheobjectuisitsvelocityOneformofkineticenergyofparticularinteresttochemistsisthermalenergy whichistheenergyassociatedwiththerandommotionofatomsandmolecules FormsofEnergy Potentialenergyistheenergypossessedbyanobjectbyvirtueofitsposition Therearetwoformsofpotentialenergyofgreatinteresttochemists Chemicalenergyisenergystoredwithinthestructuralunitsofchemicalsubstances Electrostaticenergyispotentialenergythatresultsfromtheinteractionofchargedparticles Q1andQ2representtwochargesseparatedbythedistance d EnergyandEnergyChanges Kineticandpotentialenergyareinterconvertible onecanbeconvertedtotheother Althoughenergycanassumemanyforms thetotalenergyoftheuniverseisconstant Energycanneitherbecreatednordestroyed Whenenergyofoneformdisappears thesameamountofenergyreappearsinanotherformorforms Thisisknownasthelawofconservationofenergy UnitsofEnergy TheSIunitofenergyisthejoule J namedfortheEnglishphysicistJamesJoule Itistheamountofenergypossessedbya2 kgmassmovingataspeedof1m s Ek mu2 2kg 1m s 2 1kg m2 s2 1JThejoulecanalsobedefinedastheamountofenergyexertedwhenaforceof1newton N isappliedoveradistanceof1meter 1J 1N mBecausethemagnitudeofajouleissosmall weoftenexpresslargeamountsofenergyusingtheunitkilojoule kJ 1kJ 1000J ClassicalPhysics Principalassumptions Thephysicalstateofanysystemcanbedescribedbyasetofquantitiescalleddynamicalvariablesthattakeonwelldefinedvaluesatanyinstantintime 2 Thefuturestateofanysystemiscompletelydeterminediftheinitialstateofthesystemisknown 3 Theenergyofasystemcanbevariedinacontinuousmannerovertheallowedrange PropertiesofWaves Allformsofelectromagneticradiationtravelinwaves Wavesarecharacterizedby Wavelength lambda thedistancebetweenidenticalpointsonsuccessivewavesFrequency nu thenumberofwavesthatpassthroughaparticularpointin1second Amplitude theverticaldistancefromthemidlineofawavetothetopofthepeakorthebottomofthetrough Wavelength l isthedistancebetweenidenticalpointsonsuccessivewaves Amplitudeistheverticaldistancefromthemidlineofawavetothepeakortrough PropertiesofWaves Frequency n isthenumberofwavesthatpassthroughaparticularpointin1second Hz 1s 1 wavelength m frequency s 1 velocity m s Note speedoflightcisaconstantThelongerthewavelength thelowerthefrequency Amplitude intensity ofawave light WaveFunction k angularwavenumberT period angularfrequency sinusoidalwave superposition constructiveinterference destructiveinterference StandingWave驻波 y 2Asinkx cos t TwoDimensionalWave Differentbehaviorsofwavesandparticles TheNatureofLight Thespeedoflight c throughavacuumisaconstant c 2 99792458 108m sNormallyroundedto c 3 00 108m s Speedoflight frequencyandwavelengtharerelated isexpressedinmetersvisexpressedinreciprocalseconds s 1 s 1isalsoknownashertz Hz TheNatureofLight Visiblelightisonlyasmallcomponentofthecontinuumofradiantenergyknownastheelectromagneticspectrum TheElectromagneticSpectrum Anelectromagneticwavehasbothanelectricfieldcomponentandamagneticcomponent Theelectricandmagneticcomponentshavethesamefrequencyandwavelength Whenlightpassesthroughtwocloselyspacedslits aninterferencepatternisproduced TheDouble SlitExperiment Constructiveinterferenceisaresultofaddingwavesthatareinphase Destructiveinterferenceisaresultofaddingwavesthatareoutofphase Thistypeofinterferenceistypicalofwavesanddemonstratesthewavenatureoflight Whenasolidisheated itemitselectromagneticradiation knownasblackbodyradiation overawiderangeofwavelengths Theamountofenergygivenoffatacertaintemperaturedependsonthewavelength Classicalphysicsfailedtocompletelyexplainthephenomenon Assumedthatradiantenergywascontinuous thatis couldbeemittedorabsorbedinanyamount MaxPlancksuggestedthatradiantenergyisonlyemittedorabsorbedindiscretequantities likesmallpackagesorbundles Aquantumofenergyisthesmallestquantityofenergythatcanbeemitted orabsorbed QuantumTheory TheenergyEofasinglequantumofenergyishiscalledPlanck sconstant 6 63 10 34J sTheideathatenergyisquantizedratherthancontinuousislikewalkingupastaircaseorplayingthepianoYoucannotsteporplayanywhere continuous youcanonlysteponastairorplayonakey quantized QuantumTheory AlbertEinsteinusedPlanck stheorytoexplainthephotoelectriceffect Electronsareejectedfromthesurfaceofametalexposedtolightofacertainminimumfrequency calledthethresholdfrequency Thenumberofelectronsejectedisproportionaltotheintensity Belowthethresholdfrequencynoelectronswereejected nomatterhowbright orintense thelight PhotonsandthePhotoelectricEffect Einsteinproposedthatthebeamoflightisreallyastreamofparticles Theseparticlesoflightarenowcalledphotons Eachphoton oftheincidentlight mustpossestheenergygivenbytheequation PhotonsandthePhotoelectricEffect Shininglightontoametalsurfacecanbethoughtofasshootingabeamofparticles photons atthemetalatoms Ifthe ofthephotonsequalstheenergythebindstheelectronsinthemetal thenthelightwillhaveenoughenergytoknocktheelectronsloose Ifweuselightofahigher thennotonlywilltheelectronsbeknockedloose buttheywillalsoacquiresomekineticenergy PhotonsandthePhotoelectricEffect ThisissummarizedbytheequationKEisthekineticenergyoftheejectedelectronWisthebindingenergyoftheelectron PhotonsandthePhotoelectricEffect BehaviorofLight AswavediffractionAsparticlePhotoelectriceffectDuality二象性 Sunlightiscomposedofvariouscolorcomponentsthatcanberecombinedtoproducewhitelight Theemissionspectrumofasubstancecanbeseenbyenergizingasampleofmaterialwithsomeformofenergy The redhot or whitehot glowofanironbarremovedfromafireisthevisibleportionofitsemissionspectrum Theemissionspectrumofbothsunlightandaheatedsolidarecontinuous allwavelengthsofvisiblelightarepresent Bohr sTheoryoftheHydrogenAtom Linespectraaretheemissionoflightonlyatspecificwavelengths AtomicLineSpectra Themaincomponentsofatypicalspectrophotometer Emissionandabsorptionspectraofsodiumatoms Flametests strontium38Sr copper29Cu Bohr sTheoryoftheHydrogenAtom Everyelementhasitsownuniqueemissionspectrum Bohr sTheoryoftheHydrogenAtom TheRydbergequationcanbeusedtocalculatethewavelengthsofthefourvisiblelinesintheemissionspectrumofhydrogen R istheRydbergconstant 1 09737317x107m 1 thewavelengthofalineinthespectrumn1andn2arepositiveintegerswheren2 n1 TheLineSpectrumofHydrogen NeilsBohrattributedtheemissionofradiationbyanenergizedhydrogenatomtotheelectrondroppingfromahigher energyorbittoalowerone Astheelectrondropped itgaveupaquantumofenergyintheformoflight Bohrshowedthattheenergiesoftheelectroninahydrogenatomaregivenbytheequation Enistheenergynisapositiveinteger Asanelectrongetsclosertothenucleus ndecreases Enbecomeslargerinabsolutevalue butmorenegative asngetssmaller Enismostnegativewhenn 1 Calledthegroundstate thelowestenergystateoftheatomForhydrogen thisisthemoststablestateThestabilityoftheelectrondecreasesasnincreases Eachenergystateinwhichn 1iscalledanexcitedstate TheLineSpectrumofHydrogen TheLineSpectrumofHydrogen Bohr stheoryexplainsthelinespectrumofthehydrogenatom Radiantenergyabsorbedbytheatomcausestheelectrontomovefromthegroundstate n 1 toanexcitedstate n 1 Conversely radiantenergyisemittedwhentheelectronmovesfromahigher energystatetoalower energyexcitedstateorthegroundstate Thequantizedmovementoftheelectronfromoneenergystatetoanotherisanalogoustoaballmovinganddownsteps nfisthefinalstateniistheinitialstate Quantumstaircase Bohr sTheoryoftheHydrogenAtom Supposeanelectronisinitiallyinanexcitedstate ni Duringemission theelectrondropstoalowerenergystate nf Theenergydifferencebetweentheinitialandfinalstatesis Bohr sTheoryoftheHydrogenAtom Tocalculatewavelength substitutec for andrearrange Bohr sTheoryoftheHydrogenAtom nfisthefinalstateniistheinitialstate TheBohrexplanationofthethreeseriesofspectrallines Calculatethewavelength innm ofthephotonemittedwhenanelectrontransitionsfromthen 4statetothen 2stateinahydrogenatom WorkedExample3 5 Solution Setuph 6 63 10 34J sandc 3 00 108m s 2 055 106m 1 4 87 10 7m 1nm1 10 9m 487nm WavePropertiesofMatter LouisdeBrogliereasonedthatiflightcanbehavelikeastreamofparticles photons thenelectronscouldexhibitwavelikeproperties AccordingtodeBroglie electronsbehavelikestandingwaves Onlycertainwavelengthsareallowed Atanode theamplitudeofthewaveiszero WavePropertiesofMatter DeBrogliededucedthattheparticleandwavepropertiesarerelatedbythefollowingexpression isthewavelengthassociatedwiththeparticlemisthemass inkg uisthevelocity inm s ThewavelengthcalculatedfromthisequationisknownasthedeBrogliewavelength CalculatethedeBrogliewavelengthofthe particle inthefollowingtwocases a a25 gbullettravelingat612m sand b anelectron m 9 109 10 31kg movingat63 0m s WorkedExample3 6 Solution25g Setuph 6 63 10 34J s or6 63 10 34kg m2 s Remembermmustbeexpressedinkg 0 025kg 1kg1000g hmu 4 3 10 35m hmu 1 16 10 5m DiffractionofElectrons Experimentshaveshownthatelectronsdoindeedpossesswavelikeproperties X raydiffractionpatternofaluminumfoil Electrondiffractionpatternofaluminumfoil TheHeisenberguncertaintyprinciplestatesthatitisimpossibletoknowsimultaneouslyboththemomentumpandthepositionxofaparticlewithcertainty xistheuncertaintyinpositioninmeters pistheuncertaintyinmomentum uistheuncertaintyinvelocityinm smisthemassinkg QuantumMechanics WorkedExample3 7 StrategyTheuncertaintyinthevelocity 1percentof5 106m s is u Calculate xandcompareitwiththediameteroftheyhydrogenatom Anelectroninahydrogenatomisknowntohaveavelocityof5 106m s 1percent Usingtheuncertaintyprinciple calculatetheminimumuncertaintyinthepositionoftheelectronand giventhatthediameterofthehydrogenatomislessthan1angstrom commentonthemagnitudeofthisuncertaintycomparedtothesizeoftheatom SetupThemassofanelectronis9 11 10 31kg Planck sconstant h is6 63 10 34kg m2 s WorkedExample3 7 Solution u 0 01 5 106m s 5 104m s x x h4 m u 6 63 10 34kg m2 s4 9 11 10 31kg 5 104m s 1 10 9m Anelectroninahydrogenatomisknowntohaveavelocityof5 106m s 1percent Usingtheuncertaintyprinciple calculatetheminimumuncertaintyinthepositionoftheelectronand giventhatthediameterofthehydrogenatomislessthan1angstrom commentonthemagnitudeofthisuncertaintycomparedtothesizeoftheatom Theminimumuncertaintyinthepositionxis1 10 9m 10 Theuncertaintyis10timeslargerthantheatom Quantum wave Mechanics Time independentSchrodingerwaveequationwithsolutionscalledstationary statefunctions Thewavefunctionmustsatisfy 1 ymustbesingle valuedatallpoints 2 Thetotalareaundery2 x mustbeequaltounityor 3 ymustbesmoothordy dxmustbecontinuousatallpoints QualitativeAspectsoftheWavefunction Ground statewavefunctionisacompromisetominimizeeachterm TheSchr dingerEquation HY EY Thewavefunctionycontainsallthedynamicalinformationaboutthesystemitdescribes Thetrickistodeterminewhatyis Andtofigureouthowtoextractthedesiredinformation TheSchr dingerequationisasecularequation 久期方程 operator eigenfunction eigenvalue sameeigenfunction SolvingSchr dingerEquation 算符 本征函数 本征值 Exactsolutioninpolarsphericalcoordinates r q f resultsinthreequantumnumbersthatindicatetheallowedquantumstates Schr dingerEquationforHydrogen principalquantumnumber n n 1 2 3 angularmomentumquantumnumber l l 0 1 n 1 magneticquantumnumber ml ml l 1 0 1 l atomicorbital wavefunctionforasingleelectronwhichdescribesthepositionoftheelectron Hydrogenandhydrogen likeatomsorbitalenergydependsonlyonn n 1multipleorbitalsexistcorrespondingtodifferentcombinationofnandl Theyare collectivelycalledanenergyshell degenerate havethesameenergy subshell Withinanenergyshell agivensetofdistinctorbitalsexistwiththesamevalueofl RadialandAngularPartsoftheWavefunction SolvingSchr dingerEquation ItiseasiertosolveSchr dingerequationinsphericalcoordinate r thaninCartesiancoordinate x y z R r R radialpart relatedwithtwoparameters n l Y angularpart relatedwithtwoparameters l m SecularEquation H E Theresultofsolvingthisequationisgettingaseriesofeigenfunction s 1 2 withcorrespondingeigenvaluesofE E1 E2 Eacheigenfunction isrepresentedwithseveralparameters n l ml Butwhatdoestheseeigenfunctionsmean QuantumNumbersandAtomicOrbitals Anatomicorbitalisspecifiedbythreequantumnumbers ntheprincipalquantumnumber apositiveinteger ltheangularmomentumquantumnumber anintegerfrom0ton 1 mlthemagneticmomentquantumnumber anintegerfrom lto l QuantumNumbers Quantumnumbersarerequiredtodescribethedistributionofelectrondensityinanatom Therearethreequantumnumbersnecessarytodescribeanatomicorbital Theprincipalquantumnumber n designatessizeTheangularmomentquantumnumber l describesshapeThemagneticquantumnumber ml specifiesorientation QuantumNumbers Theprincipalquantumnumber n designatesthesizeoftheorbital Largervaluesofncorrespondtolargerorbitals Theallowedvaluesofnareintegralnumbers 1 2 3andsoforth ThevalueofncorrespondstothevalueofninBohr smodelofthehydrogenatom Acollectionoforbitalswiththesamevalueofnisfrequentlycalledashell QuantumNumbers Theangularmomentquantumnumber l describestheshapeoftheorbital ThevaluesoflareintegersthatdependonthevalueoftheprincipalquantumnumberTheallowedvaluesoflrangefrom0ton 1 Example Ifn 2 lcanbe0or1 Acollectionoforbitalswiththesamevalueofnandlisreferredtoasasubshell QuantumNumbers Themagneticquantumnumber ml describestheorientationoftheorbitalinspace Thevaluesofmlareintegersthatdependonthevalueoftheangularmomentquantumnumber l 0 l QuantumNumbers Quantumnumbersdesignateshells subshells andorbitals WorkedExample3 8 StrategyRecallthatthepossiblevaluesofmldependonthevalueofl notonthevalueofn Whatarethepossiblevaluesforthemagneticquantumnumber ml whentheprincipalquantumnumber n is3andtheangularquantumnumber l is1 SolutionThepossiblevaluesofmlare 1 0 and 1 SetupThepossiblevaluesofmlare l 0 l ThinkAboutItConsultTable3 2tomakesureyouransweriscorrect Table3 2confirmsthatitisthevalueofl notthevalueofn thatdeterminesthepossiblevaluesofml InterpretingthewavefunctionBorninterpretationofy Accordingtothewavetheoryoflight thesquareoftheamplitudeofanEMwaveisproportionaltotheintensityoflight Butsincelightbehavesasaparticle theintensitymustbeameasureoftheprobabilitydensityofphotonsinavolumeofspace Applyingthissameideatoparticlesindicatesthatthevalueof y 2atapointisproportionaltotheprobabilitydensityoffindingtheparticleatthatpoint BornInterpretationofy Theprobabilityoffindingaparticlebetweenxandx dxisproportionalto y 2dx y 2 probabilitydensity realandnevernegative y probabilityamplitudeCanbecomplex In3 D theprobabilityoffindingaparticleinaninfinitesimalvolumedt dxdydzisproportionalto Y 2dt Nickel 110 Cesium IodineonCopper 111 amoleculeassembledfrom8cesiumand8iodineatoms QuantumNumbers Theelectronspinquantumnumber ms isusedtospecifyanelectron sspin Therearetwopossibledirectionsofspin Allowedvaluesofmsare and QuantumNumbers Abeamofatomsissplitbyamagneticfield Statistically halfoftheelectronsspinclockwise theotherhalfspincounterclockwise QuantumNumbers Tosummarizequantumnumbers principal n sizeangular l shapemagnetic ml orientationelectronspin ms directionofspin Requiredtodescribeanatomicorbital Requiredtodescribeanelectroninanatomicorbital 2px principal n 2 angularmomentum l 1 relatedtothemagneticquantumnumber ml AtomicOrbitals Allsorbitalsaresphericalinshapebutdifferinsize 1s 2s 3s 2s angularmomentumquantumnumber l 0 ml 0 only1orientationpossible principalquantumnumber n 2 AtomicOrbitals Theporbitals Threeorientations l 1 asrequiredforaporbital ml 1 0 1 AtomicOrbitals Thedorbitals Fiveorientations l 2 asrequiredforadorbital ml 2 1 0 1 2 EnergiesofOrbitals Theenergiesoforbitalsinthehydrogenatomdependonlyontheprincipalquantumnumber WorkedExample3 9 StrategyConsiderthesignificanceofthenumberandtheletterinthe4ddesignationanddeterminethevaluesofnandl Therearemultiplevaluesforml whichwillhavetobededucedfromthevalueofl Listthevaluesofn l andmlforeachoftheorbitalsina4dsubshell Solution4dPossiblemlare 2 1 0 1 2 SetupTheintegeratthebeginningoftheorbitaldesignationistheprincipalquantumnumber n Theletterinanorbitaldesignationgivesthevalueoftheangularmomentumquantumnumber l Themagneticquantumnumber ml canhaveintegralvaluesof l 0 l principalquantumnumber n 4 angularmomentumquantumnumber l 2 WavefunctionsforManyElectronAtoms Forhelium He functionofsixpositionvariables x1 y1 andz1forelectron1andx2 y2 andz2forelectron2 ForanatomwithNelectrons Schrodingerequationforhelium He Potentialenergyterm Electron electronrepulsionsnotpresentinhydrogen Withoutelectron electronrepulsions wherefdenotesanorbitalforanindividualelectron leadstounsatisfactoryresults Solution self consistentfield Hartree SCF method Self consistentfield Hartee SCF method ForanatomwithNelectrons SchematicrepresentationofSCFmethod SCForbitalscanbedescribedusingthesamesetofquantumnumbers n l ml Thefourquantumnumber n l ml ms completelylabelanelectroninanyorbitalinanyatom Computationallyintensiveaccomplishedbysophisticatedcomputerprograms electronconfiguration howelectronsaredistributedamongthevariousatomicorbitals orbitaldiagram pictorialrepresentationoftheelectronconfigurationwhichshowsthespinoftheelectron PauliExclusionPrinciple Notwoelectronsinanatomcanhavethesamefourquantumnumbers n l ml ms Effe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论