adboost, NN 等分类器模型介绍.ppt_第1页
adboost, NN 等分类器模型介绍.ppt_第2页
adboost, NN 等分类器模型介绍.ppt_第3页
adboost, NN 等分类器模型介绍.ppt_第4页
adboost, NN 等分类器模型介绍.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Agenda IntroductionBag of wordsmodelsVisualwordswithspatiallocationPart basedmodelsDiscriminativemethodsSegmentationandrecognitionRecognition basedimageretrievalDatasets Conclusions Classifierbasedmethods Objectdetectionandrecognitionisformulatedasaclassificationproblem Bagofimagepatches andadecisionistakenateachwindowaboutifitcontainsatargetobjectornot Wherearethescreens Theimageispartitionedintoasetofoverlappingwindows Discriminativemethods 106examples Nearestneighbor Neuralnetworks SupportVectorMachinesandKernels ConditionalRandomFields NearestNeighbors 106examples Shakhnarovich Viola Darrell2003 Difficultduetohighintrinsicdimensionalityofimages lotsofdataneeded slowneighborlookup Torralba Fergus Freeman2008 Multi layerHubel Wieselarchitectures Neuralnetworks LeCun Bottou Bengio Haffner1998Rowley Baluja Kanade1998Hinton Salakhutdinov2006Ranzato Huang Boureau LeCun2007 Riesenhuber Poggio1999Serre Wolf Poggio 2005Mutch Lowe2006 Biologicallyinspired SupportVectorMachines Heisele Serre Poggio 2001 Facedetection PyramidMatchKernel CombiningMultipleKernels Varma Roy2007Bosch Munoz Zisserman2007 Grauman Darrell2005Lazebnik Schmid Ponce2006 ConditionalRandomFields Kumar Hebert2003 Quattoni Collins Darrell2004 MoreinSegmentationsection AsimplealgorithmforlearningrobustclassifiersFreund Shapire 1995Friedman Hastie Tibshhirani 1998ProvidesefficientalgorithmforsparsevisualfeatureselectionTieu Viola 2000Viola Jones 2003Easytoimplement notrequiresexternaloptimizationtools Boosting AsimpleobjectdetectorwithBoosting DownloadToolboxformanipulatingdatasetCodeanddatasetMatlabcodeGentleboostingObjectdetectorusingapartbasedmodelDatasetwithcarsandcomputermonitors http people csail mit edu torralba iccv2005 Boosting Boostingfitstheadditivemodel byminimizingtheexponentialloss Trainingsamples Theexponentiallossisadifferentiableupperboundtothemisclassificationerror Weakclassifiers Theinputisasetofweightedtrainingsamples x y w Regressionstumps simplebutcommonlyusedinobjectdetection Fourparameters b Ew y x q a Ew y x q x fm x q Fromimagestofeatures Amyriadofweakdetectors Wewillnowdefineafamilyofvisualfeaturesthatcanbeusedasweakclassifiers weakdetectors Takesimageasinputandtheoutputisbinaryresponse Theoutputisaweakdetector Amyriadofweakdetectors Yuille Snow Nitzbert 1998Amit Geman1998Papageorgiou Poggio 2000Heisele Serre Poggio 2001Agarwal Awan Roth 2004Schneiderman Kanade2004Carmichael Hebert2004 Weakdetectors TexturesoftexturesTieuandViola CVPR2000 Everycombinationofthreefiltersgeneratesadifferentfeature Thisgivesthousandsoffeatures Boostingselectsasparsesubset socomputationsontesttimeareveryefficient Boostingalsoavoidsoverfittingtosomeextend Haarwavelets HaarfiltersandintegralimageViolaandJones ICCV2001 Theaverageintensityintheblockiscomputedwithfoursumsindependentlyoftheblocksize Haarwavelets Papageorgiou Poggio 2000 PolynomialSVM Edgesandchamferdistance Gavrila Philomin ICCV1999 Edgefragments Weakdetector kedgefragmentsandthreshold Chamferdistanceuses8orientationplanes Opelt Pinz Zisserman ECCV2006 Histogramsoforientedgradients Dalal Trigs 2006 ShapecontextBelongie Malik Puzicha NIPS2000 SIFT D Lowe ICCV1999 Weakdetectors Partbased similartopart basedgenerativemodels Wecreateweakdetectorsbyusingpartsandvotingfortheobjectcenterlocation Carmodel Screenmodel Thesefeaturesareusedforthedetectoronthecoursewebsite Weakdetectors Firstwecollectasetofparttemplatesfromasetoftrainingobjects Vidal Naquet Ullman NatureNeuroscience2003 Weakdetectors Wenowdefineafamilyof weakdetectors as Betterthanchance Weakdetectors Wecandoabetterjobusingfilteredimages Stillaweakdetectorbutbetterthanbefore Example screendetection Featureoutput Example screendetection Featureoutput Thresholdedoutput Weak detector Producesmanyfalsealarms Example screendetection Featureoutput Thresholdedoutput Strongclassifieratiteration1 Example screendetection Featureoutput Thresholdedoutput Strongclassifier Secondweak detector Producesadifferentsetoffalsealarms Example screendetection Featureoutput Thresholdedoutput Strongclassifier Strongclassifieratiteration2 Example screendetection Featureoutput Thresholdedoutput Strongclassifier Strongclassifieratiteration10 Example screendetection Featureoutput Thresholdedoutput Strongclassifier Addingfeatures Finalclassification Strongclassifieratiteration200 Wewantthecomplexityofthe3featuresclassifierwiththeperformanceofthe100featuresclassifier Cascadeofclassifiers FleuretandGeman2001 ViolaandJones2001 3features 30features 100features Selectathresholdwithhighrecallforeachstage Weincreaseprecisionusingthecascade Somegoalsforobjectrecognition AbletodetectandrecognizemanyobjectclassesComputationallyefficientAbletodealwithdatastarvingsituations SometrainingsamplesmightbehardertocollectthanothersWewanton linelearningtobefast Sharedfeatures Islearningtheobjectclass1000easierthanlearningthefirst Canwetransferknowledgefromoneobjecttoanother Arethesharedpropertiesinterestingbythemselves Sharedfeatures Screendetector Cardetector Facedetector Independentbinaryclassifiers Torralba Murphy Freeman CVPR2004 PAMI2007 50trainingsamples class29objectclasses2000entriesinthedictionaryResultsaveragedon20runsErrorbars 80 interval Krempp Geman Amit 2002Torralba Murphy Freeman CVPR2004 Sharedfeatures Class specificfeatures Generalizationasafunctionofobjectsimilarities 12viewpoints 12unrelatedobjectclasses Numberoftrainingsamplesperclass Numberoftrainingsamplesperclass AreaunderROC AreaunderRO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论