几种常见数列求和方式及其相应练习题.doc_第1页
几种常见数列求和方式及其相应练习题.doc_第2页
几种常见数列求和方式及其相应练习题.doc_第3页
几种常见数列求和方式及其相应练习题.doc_第4页
几种常见数列求和方式及其相应练习题.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列数列求和【考题回放】1. (北京卷)设,则等于( D )A. B. C.D.2. 等差数列an中,a1=1,a3+a5=14,其前n项和Sn=100,则n=(B)A9 B10 C11 D123. (福建)数列的前项和为,若,则等于(B)A1 B C D4. (全国II)设Sn是等差数列an的前n项和,若,则A. B. C. D.解析:由等差数列的求和公式可得且所以,故选A5. (天津卷)已知数列、都是公差为1的等差数列,其首项分别为、,且,设(),则数列的前10项和等于()A55 B70C85D100解:数列、都是公差为1的等差数列,其首项分别为、,且,设(),则数列的前10项和等于=, =,选C.6. (江苏卷)对正整数n,设曲线在x2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是解:,曲线y=xn(1-x)在x=2处的切线的斜率为k=n2n-1-(n+1)2n切点为(2,-2n),所以切线方程为y+2n=k(x-2),令x=0得 an=(n+1)2n,令bn=.数列的前n项和为2+22+23+2n=2n+1-2数列求和常用方法一、直接求和法(或公式法)将数列转化为等差或等比数列,直接运用等差或等比数列的前n项和公式求得.等差数列求和公式:等比数列求和公式:(切记:公比含字母时一定要讨论) 例1:(07高考山东文18)设是公比大于1的等比数列,为数列的前项和已知,且构成等差数列(1)求数列的等差数列(2)令求数列的前项和解:(1)由已知得解得设数列的公比为,由,可得又,可知,即,解得由题意得故数列的通项为(2)由于由(1)得, 又 是等差数列 故例2:已知,求的前n项和.解:由 由等比数列求和公式得 (利用常用公式) 1针对训练1: 设Sn1+2+3+n,nN*,求的最大值. 解:由等差数列求和公式得 , (利用常用公式) 当 ,即n8时,二、错位相减法设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。若,其中是等差数列,是公比为等比数列,令 则 两式相减并整理即得例2(07高考天津理21)在数列中,其中()求数列的通项公式;()求数列的前项和;()解:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为()解:设,当时,式减去式,得,这时数列的前项和当时,这时数列的前项和例3:(07高考全国文21)设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和解:()设的公差为,的公比为,则依题意有且解得, 所以, (),得 小结:错位相减法的求解步骤:在等式两边同时乘以等比数列的公比;将两个等式相减;利用等比数列的前n项和的公式求和.针对训练2: 设数列满足,()求数列的通项; ()设,求数列的前项和解 (I) 验证时也满足上式,(II) , - : ,2. 求和:解:由题可知,的通项是等差数列2n1的通项与等比数列的通项之积设. (设制错位) 得 (错位相减)再利用等比数列的求和公式得: 3.求数列前n项的和.解:由题可知,的通项是等差数列2n的通项与等比数列的通项之积设 (设制错位)得 (错位相减) 三、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1) (2) (3) (4) (5) (6) (7) (8) (1),特别地当时,(2),特别地当时例1: 求数列的前n项和.解:设 (裂项)则 (裂项求和) 例2:(06湖北卷理17)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()求数列的通项公式;()设,是数列的前n项和,求使得对所有都成立的最小正整数m;解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,anSnSn1(3n22n)6n5.当n1时,a1S13122615,所以,an6n5 ()()由()得知,故Tn(1).因此,要使(1)()成立的m,必须且仅须满足,即m10,所以满足要求的最小正整数m为10.评析:一般地,若数列为等差数列,且公差不为0,首项也不为0,则求和:首先考虑则=。下列求和: 也可用裂项求和法。 针对训练3:1.在数列an中,又,求数列bn的前n项的和.解: (裂项) 数列bn的前n项和 (裂项求和) 2: 求证:解:设 (裂项) (裂项求和) 原等式成立四、分组求和法所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。例1:数列an的前n项和,数列bn满 .()证明数列an为等比数列;()求数列bn的前n项和Tn。解析:()由,两式相减得:,同定义知是首项为1,公比为2的等比数列. () 等式左、右两边分别相加得:=例2: 求数列,的前项和分析:此数列的通项公式是,而数列是一个等差数列,数列是一个等比数列,故采用分组求和法求解解: 针对训练4: 求和:解:小结:这是求和的常用方法,按照一定规律将数列分成等差(比)数列或常见的数列,使问题得到顺利求解.五、并项求和法:针对一些特殊的数列,将其某些项合并在一起就具有某种特殊的性质,因此,在求数列的前n项和时,可将这些项放在一起先求和.例1、已知数列的前n项和,求.解:小结:并项求和法的关键是寻找哪些项合并在一起就具有某种特殊的性质,一旦找到问题就可以顺利的解决.例2:在各项均为正数的等比数列中,若的值.解:设由等比数列的性质 (找特殊性质项)和对数的运算性质 得 (合并求和) 10例3:求数列的前n项和:,解:设将其每一项拆开再重新组合得 (分组)当a1时, (分组求和)当时, 针对训练5:1: 求cos1+ cos2+ cos3+ cos178+ cos179的值.解:设Sn cos1+ cos2+ cos3+ cos178+ cos179 (找特殊性质项)Sn (cos1+ cos179)+( cos2+ cos178)+ (cos3+ cos177)+(cos89+ cos91)+ cos90 (合并求和) 02:求()解:当为偶数时, ;当为奇数时,综上所述,6、 倒序相加法:类似于等差数列的前n项和的公式的推导方法。如果一个数列,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法.例1:已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得: 所以.小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.例2:(07豫理22.)设函数的图象上有两点P1(x1, y1)、P2(x2, y2),若,且点P的横坐标为.(I)求证:P点的纵坐标为定值,并求出这个定值;(II)若(III)略

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论