




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4 6 3角的特殊关系 1 我们平时所用的直角三角板的三个角分别是多少度 其中两个锐角的和是多少度 回顾 2 任意一个直角三角形的两个锐角之和是多少度 两个角的和等于90 直角 就说这两个角互为余角 简称互余 练习一 1 如图 1 2 90 1与 2互为 1的余角是 2的余角是 2 已知 1 27 48 则它的余角等于 余角 2 1 62 12 下一页 1 1与 2互余 解 1与 2互余 1 2 900或 1 900 2 2 900 1 画出 COB的余角 画一画 量一量 用量角器量一下这两角的度数 根据图形 猜一猜 1与 2相等吗 动动脑 3 议一议 把结论归纳一下 4 试一试 你还能用什么方法来说明这个结论 相等 同角的余角相等 1 2 解 1与 COB互余 2与 COB互余 1 BOC 90 2 BOC 90 1 90 BOC 2 90 BOC 1 2 如图 1与 COB互余 2与 COB互余则 1 2吗 A O B D C 1 2 同角的余角相等 如图 AOB 90 COD 90 则 1与 2是什么关系 答 1 2解 AOB 90 COD 90 1 BOD 90 2 BOD 90 1 2 A O B C D 1 2 如图 1与 2互余 3与 4互余 如果 1 3 那么 2与 4相等吗 为什么 解 2与 4相等 1 2 90 3 4 90 2 90 1 4 90 3 1 3 2 4 等角的余角相等 动动脑 A B C O 1 2 两个角的和等于180 平角 就说这两个角互为补角 简称互补 如图 1是 BOC的补角 2是 BOC的补角 那么 1与 2相等吗 解 1与 2相等 1 BOC 180 2 BOC 180 1 180 BOC 2 180 BOC 1 2 A O B D C 1 想一想 2 同角的补角相等 如图 1与 2互补 3与 4互补 如果 1 3 那么 2与 4相等吗 为什么 解 2与 4相等 1 2 180 3 4 180 2 180 1 4 180 3 1 3 2 4 等角的补角相等 动动脑 1 2 4 3 判断 正确的打 错误的打 一个角的余角一定是锐角 一个角的补角一定是钝角 若 1 2 3 90 那么 1 2 3互为余角 练习二 例1 填表 50 140 135 30 150 30 60 29 47 36 150 12 24 90 x 180 x 收获 求 的余角的计算方法为90 90 求 的补角的计算方法为180 180 同一个角的余角与补角的关系是 的余角 90 的补角 90 若 1 2 180 则 若 1和 2互补 则 若 3 4 90 则 若 3和 4互余 则 3 1 2 1和 2互补 互补定义 1 2 180 互补定义 3和 4互余 互余定义 3 4 90 互余定义 练习一 填空1 70 39 的余角是 补角是 2 如果一个角的补角是150 那么这个角的余角是 3 x x 90 的余角是 它的补角是 109 21 19 21 90 x 180 x 60 两直线相交形成了 1 2 3和 4 其中的 1和 3叫做对顶角 2和 4也是对顶角 1 2 1 有公共的顶点 对顶角应具备的条件 2 一个角的两边是另一角两边的反向延长线 也就是说 一定要是两条直线相交形成的 下列各图中 1与 2是对顶角的是 D 练一练 1 2 3 4 对顶角的特征 1 有共同的顶点 2 其中一个角的两边在另一个角两边的延长线上 如果两个角是对顶角 那么这两个角相等吗 对顶角相等 动动脑 考考你 相等的两个角是对顶角吗 例2如图 两直线相交形成的四个角中 1 30 那么 2 3和 4各等于多少度 例3 如图O是直线AB上一点 OE平分 AOC OD平分 BOC那么图中共有 几对相等的角 2 几对互余的角 3 几对互补的角 解 相等的角 1 2 3 4互余的角 2与 3 1与 4 1与 3 2与 4互补的角 1与 BOE 4与 AOD AOC与 BOC 2与BOE 3与 AOD 1 120 1与 2互补 3与 2互余 则 3 2 O为直线AB上的一点 OD平分 AOB COE 90 则 BOC COD 检测 DOE AOE 30 A B C D E F G 如图 E F是直线DG上两点 BEF BFE AED CFG 90 找出图中相等的角并说明理由 讨论 AOB内部画99条射线 问图中一共有多少个角 从特殊性想起 角内没画射线 1个角角内画1条射线 1 2 个角角内画2条射线 1 2 3 个角 角内画99条射线 1 2 3 4 100 5050个角 3 要测量两堵墙所成的角的度数 但人不能进入围墙 如何测量 O 猜谜语 斗牛 打一数学概念 谜底 对顶角 小结 1 2 90 同角 或等角 的余角相等 1 2 180 同角 或等角 的补角相等 对顶角相等 1 3 2 4 作业 A 课本P158练习第2题 P159习题第3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电商平台售后服务技术解决方案与应用报告
- 现场勘查基础知识培训课件
- 2025年开放银行生态构建中的金融科技与数字货币应用前景研究报告
- 新疆石河子二中2026届高三化学第一学期期中经典模拟试题含解析
- 广东省深圳市罗湖区罗湖外国语学校2026届化学高一上期中复习检测模拟试题含解析
- 甘肃省酒泉市瓜州县2026届高三上化学期中复习检测试题含解析
- 2025年秋季初级经济师考试 经济基础知识深度解析冲刺试卷
- 2025年土木工程师考试结构设计专项训练试卷 掌握结构设计要点
- 2025年注册会计师考试 会计科目冲刺模拟试卷及答案详解
- 2025年中学教师招聘考试(中学科目二)教育知识与能力重点难点试卷
- 一年级道德法治教案设计
- 2024年上海市自来水公司招聘笔试冲刺题(带答案解析)
- 微量注射泵的使用操作评分标准
- 专利侵权比对分析报告
- 民航安全检查全套教学课件
- 社情民意信息写作与传播
- 腹腔镜下嵌顿疝的治疗
- 电气施工图审图要点
- 机场管制课件
- 2023中华护理学会团体标准-老年人误吸的预防
- 体育中心建设项目可研报告汇编(完整版)资料
评论
0/150
提交评论