




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章 系统仿真结果分析采用统计方法来估计系统的性能,利用统计分析方法要求样本数据具有统计独立性,但实际上在很多情况下这个条件并不能满足。解决这一难题的途径无非两条:一是对样本序列进行处理,使之尽量满足统计独立性条件;二是在经典统计方法的基础上进行修正使之适合于处理相关的样本序列。终态仿真是指仿真实验在某个持续事件段上运行。稳态仿真则是通过系统的仿真实验,希望的得到一些系统性能测度指标在系统达到稳态时的估计值。有必要采用方差减小技术,即在相同的仿真运行次数下获得较小方差的仿真输出结果。8.1终态仿真的结果分析8.1.1 重复运行法所谓重复运行方法是指选用不同的独立随机数序列,采用相同的参数、初始条件以及用相同的采样次数n对系统重复进行仿真运行。对于一终态仿真的系统,由于每次运行是相互独立的,因此可以认为每次仿真运行结果是独立同分布的随机变量,是服从正态分布的随机变量。随机变X量的期望值E(X)地估计值为:(8.1)其中, (8.2)(8.3)为置信水平。根据中心极限定理,若产生的样本点Xj越多,即仿真运行的次数越多,则Xj越接近于正态分布,因此在终态仿真中使用仿真方法运行的重复次数n不能选取得太小。8.1.2序贯程序法在终态仿真结果分析得重复运行法中,通过规定次数得仿真 可以得到随机变量取值的置信区间,置信区间的长度与仿真次数的平方根成反比。显然,若要缩小置信区间的长度就必然增加仿真次数n。这样就产生了另一个方面的问题,即在一定的精度要求下,规定仿真结果的置信区间,无法确定能够达到精度要求的仿真次数。这样就可以对置信区间的长度进行控制,避免得出不适用的结论。一般说来,在同样精度要求下,采用序贯程序法得出的仿真重复运行次数比利用解析法得到的次数要少。由式(8.1)可知,样本X的100(1-)%置信区间的半长为:(8.4)式中 (8.5)S为样本的标准差,n为重复运行次数。设给定一准确的临界值,即限定置信区间的长度为,并给定精度(1-)。为了达到此精度要求,需要取足够大的仿真运行次数n,使之满足:(8.6)假设仿真已经重复运行了n0次(n02),为了满足置信区间半长的临界值,必须选择重复运行次数n,使得:nn0(8.7)且 (8.8)初始运行仿真运行的次数应当至少大于2,最好取4或5。由式8.8可以推出n应当满足(8.9)显然n的解就是满足式8.9的最小整数。(8.10)注意这里假定n次独立重复运行结果总体方差2的估计值S2(n)随着增加n次运行没有显著的变化,因此可以用n0的总体方差代替。实际上,利用次仿真运行的方差来替代n次仿真运行的方差,会使得计算得出的n值偏大。为了消除这种影响,一般采用序贯程序法,其步骤为:1) 预定独立仿真运行的初始次数,置n=,独立运行n次;2) 计算该n次运行的样本以及相应的;3) 利用下式计算值如果,则得到置信度为的满足精度要求的置信区间,从而确定了相应的仿真次数n;4) 否则令n=n+1,进行仿真得到样本值;5) 返回步骤2)。8.2稳态仿真的结果分析研究系统的稳态性能,需要研究一次运行时间很长的仿真。在仿真运行过程中,每隔一段时间即可获得一个观测值,从而可以得到一组自相关时间序列的采样值,其稳态平均值定义为:(8.11)如果的极值存在,则与仿真的初始条件无关。8.2.1批均值法批均值法的基本思想是:设仿真运行时间足够长,可以得到足够多的观测值,将分为n批,每一批中有l个观测值,则每批观测数据如下:第一批:第二批:第n批:首先对每批数据进行处理,分别得出每批数据的均值(8.13)由此可得总得样本均值为:(8.14)此即的点估计。为了构造的置信区间,需要假定是独立的且服从正态分布的随机变量,并具有相同的均值和方差。此时的近似置信区间的计算公式为:(8.15)式中 (8.16)n为观测值的批数。8.2.2稳态序贯法在利用批均值法进行计算时,假定每批观测值的均值是独立的,但实际上是相关的。为了得到不相关的,直观的做法是:保持批数n不变,不断增大l,直到满足不相关的条件为止。但是如果n选择过小,则的方差加大,结果得到的置信区间就会偏大,为此n也必须足够大。这样为了达到精度要求就必须选择足够大的n和l,使得样本总量特别大,而仿真过程中时间的消耗也是必须考虑的重要因素。稳态序贯法是一种尽可能减少m的方法,较好地解决了批长度的确定以及仿真运行总长度的确定问题,并能满足规定的置信区间精度的要求。设仿真运行观测值的批长度为l,已经有观测值批(),考察相隔为i的两批观测值批均值的相关系数 随l的变化规律大致有三种情况:1) 为递减函数(见图8.1);2) 的值一次或多次改变方向,然后严格地减少到0(见图8.2);3) 0或者随着l变化没有一定的规律。0l0l图8.1 为单调递减函数图8.2 多次改变方向然后递减根据的以上3种特性,基于批均值法的稳态序贯法原理如下:1) 给定批数因子n、f以及仿真长度(是的整数倍),的判断值为u,置信区间的相对精度,置信水平。令i=1。2) 进行长度为的仿真运行,获得个观测值。3) 令,计算。4) 如果,则说明太小,需加大,可以令i=i+1,且,返回第2步获取其余个观测值。5) 如果,则表明增长仿真运行长度无助于的判断,执行第8步。6) 如果,计算,判断是否具有第2类特征;如果,则说明该确实具有第2类特征,需要进一步加大,令i=i+1,且,返回第2步获取其余个观测值。7) 如果,则说明已经具有第1类特征,而且达到判断值n的l已经得到,可以相信的值满足独立性要求,此时用批均值法计算该n批长度为fl的置信区间。8) 计算以及置信区间的半长,最后得9) 如果,说明精度不满足要求,令i=i+1,且,返回第2步获取其余个观测值。10) 如果,则精度满足要求,可以令估计值,仿真停止。稳态序贯法较好地解决了批长度的确定以及仿真运行总长度的确定问题,并能满足规定的置信区间精度的要求。8.2.3再生法在批均值法中,选取批长度的原则尚未完全确定,因此有必要考虑其它有效的方法。再生法的思想就是要找出稳态仿真过程中系统的再生点,由每个再生点开始的再生周期中所获得的统计样本都是独立同分布的,可以采用经典统计方法对参数进行评估并构造参数值的置信区间在仿真过程中,随着仿真时钟的推进,系统的状态变量在不断地发生变化。如果在某一时刻观测到了系统一组状态变量的数值,而在其后的若干时间之后又重新观测到系统的完全相同的一组状态变量的数值,则称所观测到的系统为再生系统。也就是说,在稳态仿真中,系统从某一初始状态开始运行,若干时间后重新达到该状态;这时可以认为系统重新达到该状态后的过程相对于以前的过程是独立的,这就相当于系统在此时重新运行。显然在若干时间后这种情况将重新发生,因此这个重复的过程称为系统的再生周期,而系统初始状态重复出现的时刻点称为系统的再生点。再生法的缺点在于系统再生点的数量要求足够多,而且每个再生周期应该是独立的。而实际系统的仿真运行中可能不存在再生点或者再生周期过长,这样就要求仿真运行的总长度要足够大。假设在M/M/1系统的观测中有p个完整的再生周期,令为第j个再生周期中各个实体等待时间的总和:为第j个再生周期中受到服务的实体个数。和都是独立同分布的随机序列,然而和并不相互独立,因为较大的值可指望有较大的值伴随产生。假设总观测次数为N,各个实体的等待时间分别为,则实体的平均等待时间的估计值由下式给出:如果将各个实体等待时间根据再生周期进行分组,则上式又可以写为:式中:是一个再生周期中实体等待时间综合的估计值,是一个再生周期中受到服务的实体个数的估计值。当p足够大时,是渐近无偏的,即:而实际上,对W的估计值是有偏的,因而需要估计统计值的方差,以确定平均等待时间的置信区间,由于和皆为随机变量,为了避免直接处理随机变量之比,引入变量:这是一个独立同分布的随机变量序列,同时我们可以得到:设为随机变量的方差,根据中心极限定理,当时,下列随机变量:为收敛于标准正态分布的随机变量。式中(8.17)从而有 (8.18)式中为对应显著水平为的标准正态分布的临界限。将式(8.17)代入式(8.18),可以得出:即 从而得到平均等待时间的近似置信区间为: 8.3 方差减小技术8.3.1公用随机数法(CRN)公用随机数法是应用于对两个或者几个不同的系统模型进行比较的情况。采用公用随机数法的目的就是在其它环境条件完全相同的情况下,尽量消除因为选取随机数造成的仿真运行结果的差异,而使得所观测到的差异仅仅只是来源于系统模型本身的差异。公用随机数法的思想为:在不同模型的仿真运行过程中,采用相同的单位均匀分布种子随机数流。考虑两个模型,设和分别是从第1个模型和第2个模型的仿真运行中得到的第j个独立再生周期中的数据,对进行估计。如果对每个模型产生了n个再生周期,并且设定则,而是的一个无偏估计。由于是独立同分布的随机变量,因此,我们可以得出:如果两个模型得运行是独立得,则和是独立的,即;而如果能够使得和是正相关的,即使,这样得到的估计的方差就减小了。为了实施公用随机数法,需要使各个模型中的随机数同步,即在一个模型中使用于一个具体目的的随机数,在所有其它模型中也应该使用于同一目的,在仿真中达到这种同步的一般原则为:1) 如果能够有几个可以同时工作的不同随机数发生器,则可以用一个发生器专门为一个指定的随机变量产生种子。不同的随机变量用不同的随机数发生器;2) 实现产生出所需要的随机数并存储起来,在对各个模型仿真运行时按照需要取用这些随机数;3) 使用逆变换法产生随机变量,因为这种方法每产生一个随机变量仅仅只需要一个单位均匀分布的随机数。8.4.2对偶变量法(AV)对偶变量法是一种应用于单个系统模型仿真运行时的方差减小技术。对于同一个系统模型,每一次仿真运行中得到的观测数据时存在差异的,同样这种差异可能由随机数的选取而引起,采用对偶变量法的目的就是尽量消除这种差异。对偶变量法的中心思想就是在系统模型的两次仿真运行过程中,设法使得第1次运行中的小观测值能够被第2次仿真运行中的大观测值所补偿,或者是反过来。这就相当于采用两次运行中观测值的平均值作为分析的基准数据点,而这个平均值与所估计的观测值的期望更加接近。一般情况下,对偶变量法使用互补的随机数驱动系统模型的两次运行。也就是说,如果是用于第1次运行中某一具体目的的单位均匀分布随机数,则在第2次运行中将(1-)用于同一目的。考察系统模型所进行的两次仿真运行,设定每次运行产生n个再生周期,这样可以构成一系列观测值对:。各观测值对相互独立,令而 为的点估计,由于是独立同分布的随机变量,因此有如果两次运行是相互独立的,则。如果能设法使得之间形成负相关,也就是使,方差便会减小。8.4.3控制变量法控制变量法是利用随机变量之间的相关性来实现方差衰减的目的。设Y是某一个输出随机变量,我们要估计,而X是一个均值已知,且与Y相关的随机变量。令:其中:为任意实数,易见也是的无偏估计。由于如果,则的方差 将小于Y的方差,称X为Y的控制变量,因为X部分地控制了Y。从上面地讨论可以看出,控制变量法地两个关键问题是寻找适当的控制变量和确定系数,使尽可能小。优良的控制变量X应当与Y是强相关的,这取决于模型本身的结构。例如,在排队系统中取输出变量Y为顾客的平均等待时间,则控制变量可以选用已知分布的输入变量。当选用到达时间间隔时间为控制变量,则它与Y之间构成负相关关系。如果选用服务时间为控制变量,则它与Y之间构成正相关关系。利用这种控制变量的优点是它们在仿真中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西南宁交通投资集团有限责任公司招聘4人笔试备考试题及答案解析
- 2025黑龙江牡丹江市林口县直学校遴选教师56人笔试模拟试题及答案解析
- 2025年西咸新区高新一中沣东中学招聘考试备考题库及答案解析
- 成本控制与优化操作规程书
- 中心策略实施中的监督机制建设
- 2025年高柔性不锈钢金属软管项目建议书
- 保险入门培训资料
- 医学影像成像理论课件
- 2025重庆两江新区某学校劳务派遣岗位招聘11人考试备考试题及答案解析
- TPM微咨询方案设备健康管理
- 2025年公务员考试时事政治试题【含答案详解】
- 劳动合同瑜伽馆(2025版)
- 压力开关校准培训课件
- 工会内控管理办法
- 岗位职责管理办法
- 3.1.4 认识除法算式(课件) 人教版数学二年级上册
- 2025版保育员理论考试试题试题(附答案)
- 基于无人机的公路路面及设施状况智能检测技术研究采购服务方案投标文件(技术方案)
- 履约能力提升培训大纲
- 农产品经纪人基础技能培训手册
- 2024年湖南省古丈县人民医院公开招聘医务工作人员试题带答案详解
评论
0/150
提交评论