




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
791CHAPTER19NEURALNETWORKSINFEEDBACKCONTROLSYSTEMSF.L.LewisAutomationandRoboticsResearchInstituteUniversityofTexasatArlingtonFortWorth,TexasShuzhiSamGeDepartmentofElectricalandComputerEngineeringNationalUniversityofSingaporeSingapore1INTRODUCTION7922BACKGROUND7932.1NeuralNetworks7932.2NNControlTopologies7943FEEDBACKLINEARIZATIONDESIGNOFNNTRACKINGCONTROLLERS7953.1MultilayerNNController7963.2Single-LayerNNController7983.3FeedbackLinearizationofNonlinearSystemsUsingNNs7983.4PartitionedNNsandInputPreprocessing7994NNCONTROLFORDISCRETE-TIMESYSTEMS8005MULTILOOPNNFEEDBACKCONTROLSTRUCTURES8005.1BacksteppingNeurocontrollerforElectricallyDrivenRobot8015.2CompensationofFlexibleModesandHigh-FrequencyDynamicsUsingNNs8025.3ForceControlwithNeuralNets8036FEEDFORWARDCONTROLSTRUCTURESFORACTUATORCOMPENSATION8046.1FeedforwardNeurocontrollerforSystemswithUnknownDeadzone8046.2DynamicInversionNeurocontrollerforSystemswithBacklash8057NNOBSERVERSFOROUTPUTFEEDBACKCONTROL8068REINFORCEMENTLEARNINGCONTROLUSINGNNs8078.1NNReinforcementLearningController8088.2AdaptiveReinforcementLearningUsingFuzzyLogicCritic8099OPTIMALCONTROLUSINGNNs8109.1NNH2ControlUsingtheHamiltonJacobiBellmanEquation8119.2NNHControlUsingtheHamiltonJacobiIsaacsEquation81310APPROXIMATEDYNAMICPROGRAMMINGANDADAPTIVECRITICS81511HISTORICALDEVELOPMENT,REFERENCEDWORK,ANDFURTHERSTUDY81711.1NNforFeedbackControl81711.2ApproximateDynamicProgramming819REFERENCES821BIBLIOGRAPHY825Mechanical Engineers Handbook: Instrumentation, Systems, Controls, and MEMS, Volume 2, Third Edition.Edited by Myer KutzCopyright 2006 by John Wiley & Sons, Inc.792NeuralNetworksinFeedbackControlSystems1INTRODUCTIONDynamicalsystemsareubiquitousinnatureandincludenaturallyoccurringsystemssuchasthecellandmorecomplexbiologicalorganisms,theinteractionsofpopulations,andsoon,aswellasman-madesystemssuchasaircraft,satellites,andinteractingglobaleconomies.VonBertalanffy1wereamongthersttoprovideamoderntheoryofsystemsatthebeginningofthecentury.Systemsarecharacterizedashavingoutputsthatcanbemeasured,inputsthatcanbemanipulated,andinternaldynamics.Feedbackcontrolinvolvescomputingsuitablecontrolinputs,basedonthedifferencebetweenobservedanddesiredbehavior,foradynam-icalsystemsuchthattheobservedbehaviorcoincideswithadesiredbehaviorprescribedbytheuser.Allbiologicalsystemsarebasedonfeedbackforsurvival,witheventhesimplestofcellsusingchemicaldiffusionbasedonfeedbacktocreateapotentialdifferenceacrossthemembranetomaintainitshomeostasis,orrequiredequilibriumconditionforsurvival.Volterrawasthersttoshowthatfeedbackisresponsibleforthebalanceoftwopopulationsofshinapond,andDarwinshowedthatfeedbackoverextendedtimeperiodsprovidesthesubtlepressuresthatcausetheevolutionofspecies.Thereisalargeandwell-establishedbodyofdesignandanalysistechniquesforfeed-backcontrolsystemswhichhasbeenresponsibleforsuccessesintheindustrialrevolution,shipandaircraftdesign,andthespaceage.Designapproachesincludeclassicaldesignmethodsforlinearsystems,multivariablecontrol,nonlinearcontrol,optimalcontrol,robustcontrol,Hcontrol,adaptivecontrol,andothers.Manysystemsonedesirestocontrolhaveunknowndynamics,modelingerrors,andvarioussortsofdisturbances,uncertainties,andnoise.This,coupledwiththeincreasingcomplexityoftodaysdynamicalsystems,createsaneedforadvancedcontroldesigntechniquesthatovercomelimitationsontraditionalfeed-backcontroltechniques.Inrecentyears,therehasbeenagreatdealofefforttodesignfeedbackcontrolsystemsthatmimicthefunctionsoflivingbiologicalsystems.Therehasbeengreatinterestrecentlyinuniversalmodel-freecontrollersthatdonotneedamathematicalmodelofthecontrolledplantbutmimicthefunctionsofbiologicalprocessestolearnaboutthesystemstheyarecontrollingonline,sothatperformanceimprovesautomatically.Techniquesincludefuzzylogiccontrol,whichmimicslinguisticandreasoningfunctions,andarticialneuralnetworks(NNs),whicharebasedonbiologicalneuronalstructuresofinterconnectednodes,asshowninFig.1.Bynow,thetheoryandapplicationsofthesenonlinearnetworkstructuresinfeedbackcontrolhavebeenwelldocumented.ItisgenerallyunderstoodthatNNsprovideanelegantextensionofadaptivecontroltechniquestononlinearlyparameterizedlearningsystems.ThischaptershowshowNNsfulllthepromiseofprovidingmodel-freelearningcon-trollersforaclassofnonlinearsystems,inthesensethatastructuralorparameterizedmodelofthesystemdynamicsisnotneeded.Thecontrolstructuresdiscussedaremultiloopcon-trollerswithNNsinsomeoftheloopsandanoutertrackingunity-gainfeedbackloop.Throughout,therearerepeatabledesignalgorithmsandguaranteesofsystemperformance,includingbothsmalltrackingerrorsandboundedNNweights.Itisshownthatasuncertaintyaboutthecontrolledsystemincreasesorasonedesirestoconsiderhumanuserinputsathigherlevelsofabstraction,theNNcontrollersacquiremoreandmorestructure,eventuallyacquiringahierarchicalstructurethatresemblessomeoftheelegantarchitecturesproposedbycomputerscienceengineersusinghigh-leveldesignapproachesbasedoncognitivelin-guistics,reinforcementlearning,psychologicaltheories,adaptivecritics,oroptimaldynamicprogrammingtechniques.ManyresearchershavecontributedtothedevelopmentofarmfoundationforanalysisanddesignofNNsincontrolsystemapplications.SeeSection11onhistoricaldevelopmentandfurtherstudy.2Background793DendritesNucleusMyelinNode of RanvierAxonCell bodyAxon terminalsSynapsesFigure1Nervoussystemcell.(Withpermissionfrom/jgjohnso/index.html.)2BACKGROUND2.1NeuralNetworksThemultilayerNNismodeledbasedonthestructureofbiologicalnervoussystems(seeFig.1)andprovidesanonlinearmappingfromaninputspaceRnintoanoutputspaceRm.Itspropertiesincludefunctionapproximation,learning,generalization,classication,andsoon.Itisknownthatthetwo-layerNNhassufcientgeneralityforclosed-loopcontrolpur-poses.Thetwo-layerNNshowninFig.2consistsoftwolayersofweightsandthresholdsandhasahiddenlayerandanoutputlayer.Theinputfunctionx(t)hasncomponents,thehiddenlayerhasLneurons,andtheoutputlayerhasmneurons.OnemaydescribetheNNmathematicallyasTTyW(Vx)whereVisamatrixofrst-layerweightsandWisamatrixofsecond-layerweights.Thesecond-layerthresholdsareincludedastherstcolumnofthematrixWTbyaugmentingthevectoractivationfunction()by1intherstposition.Similarly,therst-layerthresh-oldsareincludedastherstcolumnofthematrixVTbyaugmentingvectorxby1intherstposition.ThemainpropertyofNNsweareconcernedwithforcontrolandestimationpurposesisthefunctionapproximationproperty.2,3Let(x)beasmoothfunctionfromRnRm.Then,itcanbeshownthatiftheactivationfunctionsaresuitablyselectedandisrestrictedtoacompactsetSRn,thenforsomesufcientlylargenumberLofhidden-layerneurons,thereexistweightsandthresholdssuchthatonehasTT(x)W(Vx)(x)with(x)suitablysmall.Here,(x)iscalledtheneuralnetworkfunctionalapproximationerror.Infact,foranychoiceofapositivenumberN,onecanndaNNoflargeenoughsizeLsuchthat(x)NforallxS.FindingasuitableNNforapproximationinvolvesadjustingtheparametersVandWtoobtainagoodtto(x).Notethattuningoftheweightsincludestuningofthethresholdsaswell.TheneuralnetisnonlinearintheparametersV,whichmakesadjustmentoftheseparametersdifcultandwasinitiallyoneofthemajorhurdlestobeovercomeinclosed-794NeuralNetworksinFeedbackControlSystemsFigure2Two-layerNN.loopfeedbackcontrolapplications.Iftherst-layerweightsVarexed,thentheNNislinearintheadjustableparametersW(LIP).Ithasbeenshownthat,iftherst-layerweightsVaresuitablyxed,thentheapproximationpropertycanbesatisedbyselectingonlytheoutputweightsWforgoodapproximation.Forthistooccur,(VTx)mustprovideabasis.Itisnotalwaysstraightforwardtopickabasis(VTx).Ithasbeenshownthatthecerebellarmodelarticulationcontroller(CMAC),4radialbasisfunction(RBF),5fuzzylogic,6andotherstructuredNNapproachesallowonetochooseabasisbysuitablypartitioningthecompactsetS.However,thiscanbetedious.Ifoneselectstheactivationfunctionssuitably(e.g.,assigmoids),thenitwasshowninRef.7that(VTx)isalmostalwaysabasisifisselectedrandomly.2.2NNControlTopologiesFeedbackcontrolinvolvesthemeasurementofoutputsignalsfromadynamicalsystemorplantandtheuseofthedifferencebetweenthemeasuredvaluesandcertainprescribeddesiredvaluestocomputesysteminputsthatcausethemeasuredvaluestofollow,ortrack,thedesiredvalues.Infeedbackcontroldesignitiscrucialtoguaranteebyrigorousmeansboththetrackingperformanceandtheinternalstabilityorboundednessofallvariables.Failuretodosocancauseseriousproblemsintheclosed-loopsystem,includinginstabilityandunboundednessofsignalsthatcanresultinsystemfailureordestruction.TheuseofNNsincontrolsystemswasrstproposedbyWerbos8andNarendraandParthasarathy.9NNcontrolhashadtwomajorthrusts:approximatedynamicprogramming,3FeedbackLinearizationDesignofNNTrackingControllers795PlantControlu(t)Outputy(t)NN controllerNN systemidentifierEstimatedoutput )(tyIdentificationerrorDesiredoutput)(tydPlantControlu(t)Outputy(t)NN controllerDesiredoutput)(tydTracingerrorPlantControlu(t)Outputy(t)NN NNDesiredoutput)(tydTrackingerror(a)(b)(c)u(t)y(t)NN controllerNN systemidentifieroutput )(tyerroroutput)(tydu(t)y(t)NN controlleroutput)(tyderroru(t)y(t)NN NNoutput)(tyderrorcontroller 1controller 2Figure3NNcontroltopologies:(a)indirectscheme;(b)directscheme;(c)feedback/feedforwardscheme.whichusesNNstoapproximatelysolvetheoptimalcontrolproblem,andNNsinclosed-loopfeedbackcontrol.Manyresearchershavecontributedtothedevelopmentoftheseelds.SeeSection11andtheReferencesandBibliography.SeveralNNfeedbackcontroltopologiesareillustratedinFig.3,10someofwhicharederivedfromstandardtopologiesinadaptivecontrol.11Solidlinesdenotecontrolsignalowloopswhiledashedlinesdenotetuningloops.Therearebasicallytwosortsoffeedbackcontroltopologies:indirectanddirecttechniques.InindirectNNcontroltherearetwofunc-tions;inanidentierblock,theNNistunedtolearnthedynamicsoftheunknownplant,andthecontrollerblockthenusesthisinformationtocontroltheplant.DirectcontrolismoreefcientandinvolvesdirectlytuningtheparametersofanadjustableNNcontroller.ThechallengeinusingNNsforfeedbackcontrolpurposesistoselectasuitablecontrolsystemstructureandthentodemonstrateusingmathematicallyacceptabletechniqueshowtheNNweightscanbetunedsothatclosed-loopstabilityandperformanceareguaranteed.Inthischapter,weshallshowdifferentmethodsofNNcontrollerdesignthatyieldguaranteedperformanceforsystemsofdifferentstructureandcomplexity.Manyresearchershavepar-ticipatedinthedevelopmentofthetheoreticalfoundationforNNsincontrolapplications.SeeSection11.3FEEDBACKLINEARIZATIONDESIGNOFNNTRACKINGCONTROLLERSInthissection,theobjectiveistodesignanNNfeedbackcontrollerthatcausesaroboticsystemtofollow,ortrack,aprescribedtrajectoryorpath.Thedynamicsoftherobotareunknown,andthereareunknowndisturbances.Thedynamicsofann-linkrobotmanipulatormaybeexpressedas12796NeuralNetworksinFeedbackControlSystemsM(q)q嬠V(q,q)(q嬠G(q)嬠F(q)嬠嬠嬠嬠(1)mdwithq(t)嬠Rnthejointvariablevector,M(q)aninertiamatrix,Vmacentripetal/Coriolismatrix,G(q)agravityvector,andF(嬠)representingfrictionterms.Boundedunknowndis-turbancesandmodelingerrorsaredenotedby嬠dandthecontrolinputtorqueis嬠(t).Thesliding-modecontrolapproachofSlotine13,14canbegeneralizedtoNNcontrolsystems.Givenadesiredarmtrajectoryqd(t)嬠Rn,denethetrackingerrore(t)嬠qd(t)嬠q(t)andtheslidingvariableerrorr嬠嬠嬠e,where嬠嬠嬠T嬠0.Asliding-modemanifoldeisdenedbyr(t)嬠0.TheNNtrackingcontrollerisdesignedusingafeedbacklinearizationapproachtoguaranteethatr(t)isforcedintoaneighborhoodofthismanifold.Denethenonlinearrobotfunction(x)嬠M(q)(q嬠嬠e)嬠V(q,q)(q嬠嬠e)嬠G(q)嬠F(q)(2)dmdwiththeknownvectorx(t)ofmeasuredsignalssuitablydenedintermsofe(t),qd(t).TheNNinputvectorxcanbeselected,forinstance,asTTTTTTx嬠eeqqq(3)ddd3.1MultilayerNNControllerANNcontrollermaybedesignedbasedonthefunctionalapproximationpropertiesofNNs,asshowninRef.15.Thus,assumethat(x)isunknownandgivenapproximatelyastheoutputofaNNwithunknownidealweightsW,Vsothat(x)嬠WT嬠(VTx)嬠嬠with嬠anapproximationerror.Thekeyisnowtoapproximate(x)bytheNNfunctionalestimate,withthecurrent(estimated)NNweightsasprovidedbythetuningTT(x)嬠W嬠(Vx)V,Walgorithms.Thisisnonlinearinthetunableparameters.Standardadaptivecontrolap-VproachesonlyallowLIPcontrollers.NowselectthecontrolinputTT嬠嬠W嬠(Vx)嬠Kr嬠v(4)vwithKvasymmetricpositive-denite(PD)gainandv(t)acertainrobustifyingfunctiondetailedinRef.15.ThisNNcontrolstructureisshowninFig.4.TheouterPDtrackingloopguaranteesrobustbehavior.TheinnerloopcontainingtheNNisknownasafeedbacklinearizationloop,16andtheNNeffectivelylearnstheunknowndynamicsonlinetocancelthenonlinearitiesofthesystem.LettheestimatedsigmoidJacobianbe.Notethatthisjacobianis嬠嬠嬠d嬠(z)/dz嬠Tz嬠VxeasilycomputedintermsofthecurrentNNweights.Then,thenextresultisrepresentativeofthesortoftheoremsthatoccurinNNfeedbackcontroldesign.ItshowshowtotuneortraintheNNweightstoobtainguaranteedclosed-loopstability.Theorem(NNWeightTuningforStability)Letthedesiredtrajectoryqd(t)anditsderivativesbebounded.Takethecontrolinputfor(1)as(4).LetNNweighttuningbeprovidedbyTTTTTW嬠F嬠r嬠F嬠嬠Vxr嬠嬠F嬠r嬠WV嬠Gx(嬠嬠Wr)嬠嬠G嬠r嬠V(5)withanyconstantmatricesF嬠FT嬠0,G嬠GT嬠0,andscalartuningparameter嬠嬠0.Initializetheweightestimatesas.Thentheslidingerrorr(t)andNNW嬠0,V嬠randomweightestimatesareuniformlyultimatelybounded.W,V3FeedbackLinearizationDesignofNNTrackingControllers797Robot IRobust v(t)Tracking loopf(x)rNonlinear inner loop=.=.=.Robot system IRobust controlTracking Nonlinear =.=.=.=.=.=.termqdeeeKvqqqqdqdqdFigure4NNrobotcontroller.Aproofofstabilityisalwaysneededincontrolsystemsdesigntoguaranteeperform-ance.Here,thestabilityisprovenusingnonlinearstabilitytheory(e.g.,anextensionofLyapunovstheorem).ALyapunovenergyfunctionisdenedas1T1T11T1LrM(q)rtrWFW)trVFV)222wheretheweightestimationerrorsare,withtrthetraceop-VVV,WWWeratorsothattheFrobeniusnormoftheweighterrorsisused.Intheproof,itisshownthattheLyapunovfunctionderivativeisnegativeoutsideacompactset.Thisguaranteestheboundednessoftheslidingvariableerrorr(t)aswellastheNNweights.Specicboundsonr(t)andtheNNweightsaregiveninRef.15.Thersttermsof(4)areveryclosetothe(continuous-time)backpropagationalgorithm.17ThelasttermscorrespondtoNarendrase-modication18extendedtononlinear-in-the-parametersadaptivecontrol.Robustadaptivetuningmethodsfornonlinear-in-the-parametersNNcontrollershavebeenderivedbasedontheadaptivecontrolapproachesofe-modication,Ioannous-modication,orprojectionmethods.ThesetechniquesarecomparedbyIoannouandSun19forstandardadaptivecontrolsystems.RobustnessandPassivityoftheNNWhenTunedOnlineThoughtheNNinFig.4isstatic,sinceitistunedonline,itbecomesadynamicsystemwithitsowninternalstates(e.g.,theweights).ItcanbeshownthatthetuningalgorithmsgiveninthetheoremmaketheNNstrictlypassiveinacertainnovelstrongsenseknownasstate-strictpassivity,sothattheenergyintheinternalstatesisboundedabovebythepowerdeliveredtothesystem.Thismakestheclosed-loopsystemrobusttoboundedun-knowndisturbances.Thisstrictpassivityaccountsforthefactthatnopersistenceofexcitationconditionisneeded.Standardadaptivecontrolapproachesassumethattheunknownfunction(x)islinearintheunknownparametersandacertainregressionmatrixmustbecomputed.Bycontrast,theNNdesignapproachallowsfornonlinearityintheparameters,andineffecttheNNlearnsitsownbasissetonlinetoapproximatetheunknownfunction(x).Itisnotrequired798NeuralNetworksinFeedbackControlSystemsNonlinear IRobust ur(t)Tracking loopr(t)Nf(x)controlg(x)Xdx(t)e(t)Nonlinear system IRobust control()Tracki)Nonlinear inner loops)control()()()()termKvFeedback lineFigure5FeedbacklinearizationNNcontroller.tondaregressionmatrix.ThisisaconsequenceoftheNNuniversalapproximationprop-erty.3.2Single-LayerNNControllerIftherst-layerweightsVarexedsothat,with毠(x)selectedTTT(x)毠W毠(Vx)毠W毠(x)asabasis,thenonehasthesimpliedtuningalgorithmfortheoutputlayerweightsgivenbyTW毠F毠(x)r毠毠F毠r毠WThen,theNNisLIPandthetuningalgorithmresemblesthoseusedinadaptivecontrol.However,NNdesignstilloffersanadvantageinthattheNNprovidesauniversalbasisforaclassofsystems,whileadaptivecontrolrequiresonetondaregressionmatrix,whichservesasabasisforeachparticularsystem.3.3FeedbackLinearizationofNonlinearSystemsUsingNNsManysystemsofinterestinindustrial,aerospace,andU.S.DepartmentofDefense(DoD)applicationsareintheafneform,withd(t)a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿泪囊炎健康宣教
- 零食行业报告
- 同城直播项目方案咨询
- 升学指导及咨询方案
- 营养素失衡与环境污染的前沿探索-第1篇-洞察及研究
- 学生餐具消毒安全培训课件
- 虚实夹杂证辨治-洞察及研究
- 嘉积中学 2025- 2026学年度第一学期第一次大测高三物理科参考答案及评分标准
- 低碳运营模式探索-洞察及研究
- 广东省部分学校2025-2026学年高三上学期9月联考历史试卷(含答案)
- 肉制品安全培训会课件
- 五年级数学口算训练题库及解题技巧
- 江苏省泰州市兴化市昭阳湖初级中学2023-2024学年七年级上学期语文第一次质量抽测试卷(含答案)
- 2024夏季中国东方航空股份有限公司社会招聘笔试模拟试题含答案详解(能力提升)
- 2025年全国高考一卷英语真题(原卷版)
- 催化原理教学课件
- 2025年海南省公务员录用考试《行测》真题及答案解析(记忆版)
- 2025年湖北省公务员公开遴选笔试试题及答案(综合类)
- 二年级美术上册教案-《5. 千姿百态的桥》教学设计人美版
- 厨房设备维护课件
- 营养科工作流程与管理规范
评论
0/150
提交评论