系统辨识大作业论文Use.doc_第1页
系统辨识大作业论文Use.doc_第2页
系统辨识大作业论文Use.doc_第3页
系统辨识大作业论文Use.doc_第4页
系统辨识大作业论文Use.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

系统辨识大作业 基于随机逼近算法的系统辨识设计中南大学系统辨识大作业学 院:信息科学与工程学院专 业:控制科学与工程学生姓名:龚晓辉学 号:134611066指导老师:韩华 教授完成时间:2014年6月基于随机逼近算法的系统辨识设计龚晓辉1, 21. 中南大学信息科学与工程学院,长沙 4100832. 轨道交通安全运行控制与通信研究所, 长沙 410083E-mail: 摘 要:本文对系统辨识的基本原理和要素进行了详细阐述,介绍和分析了系统辨识中常用的最小二乘算法,极大似然法,神经网络算法和随机逼近算法。随机逼近算法只需利用输入输出的观测来辨识系统参数,在实际中有重要运用。本文对随机逼近算法进行了详细说明。同时,针对一个三阶系统设计了KW随机逼近算法进行了参数辨识,并且和递推最小二乘法进行了对比。实验证明在实际辨识过程中两种算法各有优缺点。关键词: 系统辨识, 随机逼近法, 递推最小二乘法1. 引言在我们所学的线性系统理论中,都是在系统模型已知的情况来设计控制率,使系统达到稳定性,准确性和快速性的要求。然而,在实际系统中,对象的模型往往是未知的。而且,非线性是普遍存在的,线性系统只是对非线性系统的一种近似。因此,了解对象准确的模型,对设计控制器及其重要。在一些实际对象中,如导弹,化学过程,生物规律,药物反应,以及社会经济等,这些对象使用机理分析法比较困难,但是通过使用辨识技术可以建立系统精确的模型,确定最优控制率1。如今,系统辨识技术已经在航空航天,海洋工程,生物学等各个领域获得了广泛运用。2. 系统辨识的基本思想与常用方法辨识的目的是为了获得对象模型。对象的模型有多种表现形式,它包括直觉模型,图表模型,数学模型,解析模型,程序模型和语言模型。这些模型之间可以相互转换。我们在建立系统模型时,需要遵循目的性,实在性,可辨识性,悭吝性的基本原则。目的性指的是建模的目的要明确,实在性指的是模型的物理概念要明确。可辨识性指的是模型结构合理,输入信号持续激励,数据量充足。悭吝性指的是被辨识参数的个数要尽量少。辨识对象模型要遵循上面的基本原则。它是将对象看成一个黑箱。从含有噪声的输入输出数据中,按照一个准则,运用辨识理论,从一组给定的模型中,确定一个与所测系统等价的模型,是现代控制理论的一个分支。系统辨识由数据、模型类和准则三要素组成。数据是由观测实体而得,它不是唯一的,受观测时间、观测目的、观测手段等影响。模型类就是模型结构,它也不是唯一的,受辨识目的、辨识方法等影响。而准则是辨识的优化目标,用来衡量模型接近实际系统的标准。它也不是唯一的,受辨识目的、辨识方法的影响。由于存在多种数据拟合方法,要评价各种方法的优劣,只有在相同的三要素下才有意义。由于被控系统受各种内外环境因素的影响,实际测量到的输入输出数据都含有一定的扰动和误差,因此辨识建模实际上是一种实验统计的方法,它所获得的模型仅仅是实际系统的外部特性等价的一种近似描述。在确定了准则函数之后,如果不考虑测量数据的扰动和误差,问题实际上就变成了方程求解、函数优化、函数逼近、或数据拟合问题。但是实际中会存在大量的噪声与扰动。因此,输入输出数据中隐含的扰动和误差,是进行辨识困难性的关键。在系统辨识的类别中,主要有在线辨识与离线辨识,线性辨识与非线性辨识,集中参数与分布参数辨识,开环辨识与闭环辨识这四种。而对于误差准则,有常用的输出误差准则,广义误差准则等。这些准则受模型结构和采样间隔的影响。在确定了这三要素之后,可以对系统进行辨识,从而确定被控对象的模型。在实际辨识一个对象的模型参数时,最关注的是辨识方法的选择。最常用的系统辨识法主要有最小二乘法、极大似然法、神经网络法和随机逼近法。最小二乘法是一种经典的有效的数据处理方法。它是1795年高斯(K.E.Guass)在预测行星和彗星运动的轨道时,提出并实际使用的。它的原理简单,不需要随机变量的任何统计特性,是动态系统辨识的主要手段。其基本思想就是它使各次实际观测和计算值之间的差值的平方乘以度量其精确度的数值以后的和为最小。因此,最小二乘法使用计算值与实测值误差的平方和函数作为准则函数,通过对准则函数求导求取其最小值来获得参数的估计值,由于准则函数是二次型函数,它的解是唯一的,其估计的结果是无偏的、收敛的和有效的。在这个原理之上,最小二乘法有很多衍生的算法,如递推最小二乘法,广义最小二乘法等。另外一种常用的参数辨识法是极大似然法。它不仅适用于线性模型也适用于非线性模型,对最小二乘法而言,它不要求任何关于数据概率分布的假设,而极大似然法属于一种概率参数估计。它需要构造一个以数据和未知参数为自变量的似然函数,并通过求这个似然函数的最大值,获得模型的参数估计值。模型输出的概率分布将最大可能地逼近实际过程输出的概率分布。但是,这种方法需要知道输出量的条件概率密度函数的先验知识。而神经网络辨识方法是通过引入人工神经网络来辨识系统参数的方法。人工神经网络是模拟人脑细胞的分布式工作特点和自组织功能,且能实现并行处理、自学习和非线性映射等能力的一种系统模型,它由连接权,求和单元和激活函数三个基本要素组成。常用的人工神经网络有感知机神经网络,BP神经网络,径向基神经网络,竞争学习神经网络,Hopfield神经网络,Boltzmann神经网络等。其辨识原理也是运用神经网络模型,在输入和输出数据的基础上,从一组给定的模型类中确定一个与所测系统等价的模型。但是,神经网络辨识方法是以大规模的数据为依据,进行多次训练,确定系统的权值,在系统实时性要求高的地方不太适用,需要进行离线计算。随机逼近算法是一般随机逼近算法和最小二乘法相结合的一种简便且很有实用价值的参数估计方法。它主要用来求解准则函数的极值。在系统辨识中,还有很多其它方法,如预报误差法,闭环辨识法,时变辨识法以及相关的递推算法。这里限于篇幅,不再详细说明。本文采用随机逼近算法对系统参数进行辨识。随机逼近算法是一种递推算法,随机逼近法是由统计学中通过连续逼近而获得估计参数发展而来的,是随机问题的梯度法应用于观测数据被噪声污染而对此噪声的统计特性不够充分了解的情况,可用于任何一个可用反复观测值构成的回归方程式的问题。3. 随机逼近算法1951年,Robbins和Monro提出随机逼近思想,是一个著名的在存在量测噪声的情况下寻找回归方程根的回归算法2。1952年,Kiefer和Wolfowitz将随机逼近的思想应用于寻找函数极值的问题,称为KW算法。它是一种只利用输入随机变量,及对应的输出随机变量,通过迭代运算逐步逼近方程的解的方法。随机逼近算法在寻找函数极值问题中有非常重要的应用。下面详细说明随机逼近算法的原理。考虑模型参数辨识问题(1)。(1)其中是均值为0的噪声,选择准则函数,求,使的值最小。在为零均值的独立随机序列的情况下,只需求出的导数,并令其为0,即 (2)利用(2)可求出使最小的。但是,由于表达式中与有关,在统计特性未知情况下,无法求解上面的表达式。在上面的表达式中,如果用平均值来近似数学期望,那么上面表达式中的解成了最小二乘问题。但是,为了在统计特性未知的情况下,求解式(2),使获准则函数最小3。随机逼近算法是可以解决这类问题。3.1 随机逼近常用的迭代算法随机逼近算法中是一种迭代算法。常用的迭代算法有Robbins-Monro算法和Keifer-Wolfowitz算法和同时扰动随机逼近算法(SPSA算法)1. Robbins-Monro算法算法的递推表达式如(3)所示(3)式中,是对应于的值,为算法的收敛因子,且满足(4)。(4)则是在均方意义下收敛方程的解。一般,式(5)中的收敛因子可以满足收敛条件(5)。(5)2. Keifer-Wolfowitz算法Robbins-Monro算法的出发点是求的根,而Keifer-Wolfowitz(KW)算法则是用来确定的极值。迭代算法的表达式见(6)。(6)如果满足(4),则KW算法最终可以收敛到的极值。3. 同时扰动随机逼近算法随机逼近算法主要是利用输入输出量值来估计未知函数的极值,在Keifer和Wolfowitz提出KW算法之后,又有有限微分随机逼近算法,随机方向的随机逼近算法,同时扰动随机逼近算法4。其中,同时扰动随机逼近算法是三种算法中效率最好的。该算法只用标准KW方法的的数据就能得到其它方法相同精度水平的估计准确度(是自变量维数)。令为可微损失函数,为求的根,同时扰动随机逼近算法的递推表达式见(7)。(7)是第k次的估计值,是在的同时扰动值,为增益序列。是维相互独立零均值的随机的矢量,则在噪声情况下L的测量值如式(8)所示。(8)其中,为系统噪声,由对称分布获得。在第k步后的估计为式(9)。 (9)在该算法中,存在参数需要选择,它们有一套规则遵循,许多文献都对该规则进行了详细说明。同时扰动随机逼近算法在自适应控制和寻求系统的优化值中有重要运用,尤其是对模型未知的对象中。在实际系统中,很难得到系统的具体函数形式以及解析解。随机逼近法是只利用观测值估计未知函数的极值或未知函数解的求解方法,具有广泛的实际运用前景。3.2 差分方程的参数辨识在微控制器高速发展的今天,许多实际控制系统都是数字控制。为了实现数字控制,系统的数学模型一般由差分方程表示。系统差分方程表达式采用式(10)。(10)式中 ,是均值为0,方差为常数的不相关噪声。差分方程的参数辨识问题可表示为(11)。(11)式中,。选取准则函数,采用随机逼近原理,可以获得参数的随机逼近算法如式(12)所示。(12)在(12)中,要满足收敛条件(4),同时它的下降速度不能太快,否则被处理的数据总量太少。4 辨识方案设计本文针对常见的三阶系统模型,采用随机逼近算法对系统参数进行了辨识。系统的差分方程如(13)所示。(13)其中,随机逼近算法辨识的机构框图如图1所示。图 1 随机逼近算法辨识结构图4.1 随机逼近算法设计系统辨识的结构框图如图1所示。图中为系统实际的模型,为均值为0,方差为1的高斯白噪声,为辨识的系统模型,为实际输出和辨识模型输出的偏差。在本辨识系统中,模拟实际的采样值,随机逼近算法接受模拟的输入输出值辨识出系统的模型。下面从系统辨识的三要素说明辨识方案的设计。1. 输入信号输入信号对系统辨识非常重要。它能将系统的所有模态激发,这要求其带宽要比被辨识系统的带宽要宽。但是在施加输入信号时,不能影响原系统的工作,因此,输入信号不能含有直流分量,其具体幅值由安全工况确定。由于二电平M序列工程上易于实现,可以保证较好的辨识结果,采用M序列可以满足系统的辨识要求。其选择原则见(14)。系统的过度时间为T,最高工作频率为,(14)在本系统中,M序列的长度n=10。2. 模型类本系统采用的是三阶差分方程来模拟系统的输出。系统辨识的模型也是一样的,不同的是模型的参数。令辨识的系统参数为,则系统采用的模型如(15)。(15)3. 辨识算法和误差准则本文使用随机逼近算法辨识系统参数。在Robbins-Monro算法,Keifer-Wolfowitz(KW)算法以及同时扰动随机逼近算法中,KW算法是比较常用的常用于系统辨识的方法,而同时扰动随机逼近算法则常用于求解函数极值,适用于无模型控制中。这里使用KW算法辨识系统参数。随机逼近算法是一种梯度求解算法。其思想就是按照负梯度的方向获得使误差准则最小的估计参数。因此,误差准则是解决问题的关键。根据(2),辨识系统的误差准则如(16)。(16)根据KW算法得到系统的估计递推表达式(17)。(17)其中,是输入输出数据的组合,它的值实际可采集。该递推表达式要最终收敛到使最小的估计值,增益需要满足(4),本文取。随机逼近算法的流程图如图2所示。图 2 随机逼近算法流程框图5 仿真结果和分析采用KW随机逼近算法在MATLAB R2010B对3.1中的系统进行了辨识5,得到了下面的结果。1. 输入M序列图3给出了迭代步数k=0-400的输入M序列图。图 3 系统输入M序列2. 参数辨识结果系统的辨识结果图如图4所示,其中的参数为表达式(15)中的参数。图 4 系统模型辨识参数3. 参数辨识结果图5表示辨识过程中实际输出和辨识输出的偏差。从图中可以看出,开始时较大,之后偏差逐渐变小,接近于零。 图 5 实际输出与预报输出偏差在算法调试过程中,发现只要收敛因子满足条件(4),无论怎么改变随机高斯噪声,算法都能收敛,都可以辨识出模型的参数。但是辨识会存在一定的偏差,这里限于篇幅没有给出实际的波形图。4. 递推最小二乘法的辨识为了和递推最小二乘法进行比较,本文也使用了递推最小二乘法对系统(13)进行了辨识。辨识的结果图如图6所示。算法的输入数据M序列和系统的干扰信号以及系统的输出都是一样的。这样可以比较随机逼近算法与递推最小二乘法的优劣。对比图4与图6发现,随机逼近法比最小二乘法稍快,但是其辨识精度没有递推最小二乘法好。且递推最小二乘法平稳性较好。图 6 递推最小二乘法辨识结果6 结论本文采用随机逼近算法KW对系统进行了辨识。从辨识结果图中发现,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论