免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 1 页 共 6页 南昌大学南昌大学 2006 2007 学年第二学期期末考试试卷学年第二学期期末考试试卷 试卷编号 试卷编号 6029 A 卷答案及评分标准 卷答案及评分标准 课程编号 课程编号 H55020190 课程名称 课程名称 数学物理方法 数学物理方法 考试形式考试形式 闭卷 闭卷 适用班级适用班级 05 物理 应物与光信息 物理 应物与光信息 姓名 姓名 学号 学号 班级 班级 学院 学院 专业 专业 考试日期 考试日期 题号 题号 一 一 二 二 三 三 四 四 五 五 六 六 七 七 八 八 九 九 十 十 总分 总分 题分题分 42 50 8 100 累 分 人 累 分 人 签签名 名 得分得分 考生注意事项 1 本试卷共 6 页 请查看试卷中是否有缺页或破损 如有立即举手报告以便更换 2 考试结束后 考生不得将试卷 答题纸和草稿纸带出考场 一 填空题 每小题 3 分 共 42 分 得分 得分 评阅人评阅人 1 复数 i z 的指数式为 2 3 i e 2 dx x x 3 8 9 3 27 3 复数 1 1 i i z 可简化为 i 4 拉普拉斯方程 0 u 在直角坐标系中的表达式为 0 2 2 2 2 2 2 z u y u x u 5 y x iv y x u z f 可导 必满足 柯西 黎曼 条件 这个条件的数学表达式 为 y v x u x v y u 6 在 1 p p p 第 2 页 共 6页 9 数学物理方程定解问题的适定性是指 解是存在的 唯一的和稳定的 10 一根两端 左端为坐标原点而右端 l x 固定的弦 用手在离弦左端四分之一处把 弦朝横向拨开距离 h 然后放手任其振动 横向位移 t x u 的初始条件为 0 0 u 4 3 4 0 4 0 4 0 t x l x l l x l h x u l x l hx x u 和 11 偏微分方程 0 1 6 2 2 3 xy u u u u u y x yy xy xx 的类型为 椭圆型 12 若解析函数 z f 的实部为 2 2 y x 则其虚部为 B 其中C为常数 A C xy 2 B C xy 2 C C y x 2 2 D C y x 2 2 13 复变函数 53 2 4 zi f z zz 有 D A 两个单极点和一个三阶极点 B 一个单极点 一个可去极点和一个三阶极点 C 两个单极点和一个二阶极点 D 一个单极点和一个三阶极点 14 判断下面的说法是否正确 正确的在题后的 中打 错误的打 1 若函数 z f 在z 点解析 则函数 z f 在z 点可导 反之亦然 2 0 6 2 y x y x xy u u xu yu u 是二阶齐线性偏微分方程 3 在洛朗展开中 虽然洛朗级数中存在 0 z z 的负幂项 但展开中心 0 z 不一定是被展 开函数的奇点 二 求解题 每小题 10 分 共 50 分 得分 得分 评阅人评阅人 说明 1 需给出必要的文字说明和演算过程 2 本题第 5 6 7 小题按专业只做其中一题只做其中一题 注意 a 物理学与应用物理学专业考生只能在第 5 6 题中任选一题完成 b 光信息专业考生则必须完成第 7 题 第 3 页 共 6页 1 1 用留数定理计算积分 3 2 2 1 z z z dz 解 被积函数 2 2 1 1 z z z f 在积分围线内有两个极点 单极点 1 z 两阶极 点 2 z 2 2 分 分 留数分别为 1 1 lim 1 Res 1 z f z f z 3 3 分 分 和 1 1 1 lim 2 1 2 1 lim 2 Res 2 2 2 z dz d z f z dz d f z z 3 3 分 分 根据留数定理得 0 2 Res 1 Res 2 2 1 3 2 z f f i z z dz 2 2 分 分 2 2 解常微分方程初值问题 0 0 0 1 3 2 2 2 y y y dt dy dt y d 注 可使用拉普拉斯 变换 或其它任何方法 解 拉普拉斯变换得 p p y p y p p y p 1 3 2 2 3 3 分 分 所以 p p p p p p p p p p y 3 1 1 1 4 1 3 1 12 1 1 3 1 3 2 1 2 4 4 分 分 逆变换得 3 1 4 1 12 1 3 t t e e t y 3 3 分 分 第 4 页 共 6页 3 设 x X 满足方程 0 X X 和边界条件 0 0 l X X 其中 可为任意实数 试根据 的可能取值求解方程 并根据边界条件确定本征值 解 可分为三种情况讨论 1 0 解为 sin cos 2 1 x C x C x X 代入边界条件得 0 sin 0 0 sin cos 0 2 1 2 1 1 l C C l C l C C a 当 的取值使得 0 sin l 时 必有 0 2 C 这和上两种情况一样没有意义 b 当 的取值使得 0 sin l 时 C 2 不必为零 这种是有意义的情况 此时 由 0 sin l 得到本征值 3 2 1 2 2 2 L n l n n l 此时 本征解为 sin 2 x l n C x X 5分 5分 4 试写出达朗贝尔公式 并求解偏微分方程 0 xx tt u u 初始条件为 x x u u t t t sin 0 0 0 解 若方程 0 2 xx tt u a u 的初始条件为 0 0 x u x u t t t 则其解为 d a at x at x t x u at x at x 2 1 2 1 2 1 此即达朗贝尔公式 4分 4分 本题中 1 a 0 x x x x sin 则 t x t x t x t x t x t x d d d t x u t x t x t x t x t x t x t x t x sin 2 1 sin 2 1 cos 2 1 cos 2 1 cos 2 1 cos 2 1 cos 2 1 sin 2 1 6 6 分 分 第 5 页 共 6页 注意注意 以下 以下 5 5 6 6 7 7 小题按专业只做一题 小题按专业只做一题 物理学与应用物理学专业的考生只能从 物理学与应用物理学专业的考生只能从 5 5 和 和 6 6 两小题中任选一题完成 光信息专业的考生则必须完成第 两小题中任选一题完成 光信息专业的考生则必须完成第 7 7 小题 小题 我是物理学或应用物理学专业的考生 选做 我是物理学或应用物理学专业的考生 选做 题 题 5 用留数定理计算实积分 2 0 cos 2 x dx 解 1 1 2 1 1 2 0 3 2 3 2 2 1 4 2 2 2 cos 2 z z z z z dz i z z dz i z z iz dz x dx 2 2 2 6 2 2 2 6 分 分 根据留数定理得 3 2 3 2 3 2 1 2 2 3 2 Res 2 cos 2 2 0 i i f i x dx 2 1 1 4 2 1 1 4 分 分 6 解偏微分方程 常数 a 均为正数 0 0 sin 2 t xx tt u u t t u a u 解 做未知函数变换将方程齐次化 令 2 sin t v u 代入方程和初始条件得 0 2 xx tt v a v 0 0 v t 1 t v 4 4 分 分 由达朗贝尔公式得 t d a t x v at x at x 2 1 4 4 分 分 最后 2 sin t t u 2 2 分 分 7 已知l阶勒让德多项式 x P l 的表达式为 l l l l l x dx d l x P 1 2 1 2 计算 dx x P x P 2 1 1 1 解 由已知可求得 x x P 1 2 2 分 分 以及 1 3 2 1 2 2 x x P 3 3 分 分 所以 dx x x dx x P x P 1 1 2 2 1 1 1 1 3 2 1 由于被积函数为奇函数 或者直接计算 1 1 2 4 1 1 3 2 1 1 1 2 1 4 3 2 1 3 2 1 x x d dx x x dx x P x P 3 3 分 分 第 6 页 共 6页 得 0 1 2 1 1 4 3 2 1 1 2 1 1 4 3 2 1 2 4 2 4 2 1 1 1 dx x P x P 2 2 分 分 三 证明题 每题 8 分 共 8 分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能制造行业智能工厂数字化转型与生产效率提升研究报告及未来发展趋势预测
- 2025年智慧农业行业智慧农业技术创新与现代农业发展研究报告及未来发展趋势预测
- 2025年云计算行业大数据分析与深度学习应用研究报告及未来发展趋势预测
- 2025年智能教育行业在线教育与个性化学习研究报告及未来发展趋势预测
- 2025年化工材料行业可持续发展与生态化学研究报告及未来发展趋势预测
- 2025年咨询服务行业AI咨询服务市场前景分析报告
- 跨部门合作协议
- 2025年网购行业网购消费者行为研究报告及未来发展趋势预测
- 金融科技安全责任承诺书7篇
- 2025年智能交通行业智能交通系统应用场景创新与城市交通管理研究报告及未来发展趋势预测
- 危重患儿营养筛查及评估
- 2025安徽六安市图书馆运营单位外包服务人员招聘2人考试笔试备考试题及答案解析
- 2025至2030全球及中国隧道磁阻器件(TMR)行业发展趋势分析与未来投资战略咨询研究报告
- 2025-2026学年高一上学期期中语文试卷(含详解+命题解读)
- 字音、字形、词语、病句(选择题)解析版-2025年中考语文试题分类汇编
- GB/T 5080.7-1986设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案
- 人物《袁隆平》PPT介绍
- GB/T 13576.1-2008锯齿形(3°、30°)螺纹第1部分:牙型
- 内蒙古鄂尔多斯煤矿
- 高中英语3500词汇
- 幼儿园中班社会:《田野里有什么》 课件
评论
0/150
提交评论