2008年高考理科数学试题及答案-四川卷.doc_第1页
2008年高考理科数学试题及答案-四川卷.doc_第2页
2008年高考理科数学试题及答案-四川卷.doc_第3页
2008年高考理科数学试题及答案-四川卷.doc_第4页
2008年高考理科数学试题及答案-四川卷.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页。全卷满分150分,考试时间120分钟。考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。2. 答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动、用橡皮擦干净后,再选涂其他答案标号。3. 答第卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。4. 考试结束,监考员将试题卷和答题卡一并收回。参考公式:如果事件A、B互斥,那么 球的表面积公式如果事件A、B相互独立,那么 其中R表示球的半径 球的体积公式如果事件在一次实验中发生的概率是,那么 次独立重复实验中事件恰好发生次的概率其中R表示球的半径第卷一选择题:设集合,则( B )()()()()复数( A )()()()()( D )()()()()直线绕原点逆时针旋转,再向右平移个单位,所得到的直线为( A )()()()()若,则的取值范围是:( C )() () () ()从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( C )()种()种()种()种7已知等比数列中,则其前3项的和的取值范围是(D )() ()() ()设是球心的半径上的两点,且,分别过作垂线于的面截球得三个圆,则这三个圆的面积之比为:( D )()()()()设直线平面,过平面外一点与都成角的直线有且只有:( D )()条()条()条()条10设,其中,则是偶函数的充要条件是( D )()()()()11设定义在上的函数满足,若,则( C )() () () ()12已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为( B )() () () ()第卷二填空题:本大题共4个小题,每小题4分,共16分。把答案填在题中横线上。13展开式中的系数为_。14已知直线与圆,则上各点到的距离的最小值为_。15已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于_。16设等差数列的前项和为,若,则的最大值为_。三解答题:本大题共6个小题,共74分。解答应写出文字说明,证明过程或演算步骤。17(本小题满分12分)求函数的最大值与最小值。解:由于函数在中的最大值为 最小值为 故当时取得最大值,当时取得最小值18(本小题满分12分) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。 ()求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;()求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;()记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。解:记表示事件:进入商场的1位顾客购买甲种商品, 记表示事件:进入商场的1位顾客购买乙种商品,记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,() () (),故的分布列 所以19(本小题满分12分) 如,平面平面,四边形与都是直角梯形,()证明:四点共面;()设,求二面角的大小;解法一:()延长交的延长线于点,由得 延长交的延长线于同理可得故,即与重合因此直线相交于点,即四点共面。()设,则,取中点,则,又由已知得,平面故,与平面内两相交直线都垂直。所以平面,作,垂足为,连结由三垂线定理知为二面角的平面角。故所以二面角的大小解法二:由平面平面,得平面,以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系()设,则故,从而由点,得故四点共面()设,则, 在上取点,使,则从而又在上取点,使,则从而故与的夹角等于二面角的平面角,所以二面角的大小20(本小题满分12分) 设数列的前项和为,已知()证明:当时,是等比数列;()求的同项公式解:由题意知,且两式相减得即 ()当时,由知于是 又,所以是首项为1,公比为2的等比数列。()当时,由()知,即 当时,由由得因此得21(本小题满分12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,()若,求的值;()证明:当取最小值时,与共线。解:由与,得 ,的方程为设则由得 ()由,得 由、三式,消去,并求得故()当且仅当或时,取最小值此时,故与共线。22(本小题满分14分)已知是函数的一个极值点。()求;()求函数的单调区间;()若直线与函数的图象有3个交点,求的取值范围。解:()因为 所以 因此()由()知, 当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论