华杯赛经典教案--带余除法(教师版).doc_第1页
华杯赛经典教案--带余除法(教师版).doc_第2页
华杯赛经典教案--带余除法(教师版).doc_第3页
华杯赛经典教案--带余除法(教师版).doc_第4页
华杯赛经典教案--带余除法(教师版).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学生姓名 年级 小六 授课时间 教师姓名 课时 课 题带余除法教学目标1、 掌握带余除法的定义;2、 掌握三大余数定理(加法余数定理,乘法余数定理,和同余定理),3、 重点理解和掌握中国剩余定理的相关问题,理解“将不熟悉转化成熟悉”的数学思想重 点掌握三大余数定理(加法余数定理,乘法余数定理,和同余定理)难 点掌握中国剩余定理的相关问题【前次课提要】整数与整除: 【知识点梳理】一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b0),若有ab=qr,也就是abqr, 0rb;这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab ( mod m ), 若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有ab ( mod m ),那么一定有abmk,k是整数,即m|(ab)三、中国剩余定理(Chinese Remainder Theorem):作业【例题讲解】题型:带余除法的定义和性质例题: (第五届小学数学报竞赛决赛)用某自然数去除,得到商是46,余数是,求和【解析】 因为是的倍还多,得到,得,所以,例题:(年全国小学数学奥林匹克试题)有两个自然数相除,商是,余数是,已知被除数、除数、商与余数之和为,则被除数是多少?【解析】 被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)(17+1)=115,所以被除数=2083-115=1968例题:(2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_,_,_。【解析】 设所得的商为,除数为,由,可求得,所以,这三个数分别是,。例题:(1997年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够问:第二组有多少人? 【解析】 由,知,一组是10或11人同理可知,知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人题型:三大余数定理的应用例题:有一个大于1的两位整数,除所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数,的约数有,所以这个数可能为。例题:两位自然数与除以7都余1,并且,求【解析】 能被7整除,即能被7整除所以只能有,那么可能为92和81,验算可得当时,满足题目要求,【巩固】 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同请问学校共有多少个班?【解析】 所求班级数是除以余数相同的数那么可知该数应该为和的公约数,所求答案为17【巩固】 (2000年全国小学数学奥林匹克试题)在除13511,13903及14589时能剩下相同余数的最大整数是_【解析】 因为, ,由于13511,13903,14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除,所以所求的最大整数是98【巩固】 (2004年南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组这样的数组共有_组【解析】 1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5因为,所以这样的数组共有下面4个:, , ,例题:(2002年小学生数学报数学邀请赛试题)六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买成语大词典一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本这种成语大词典的定价是_元【解析】 六名小学生共带钱133元133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1易知,这个钱数只能是37元,所以每本成语大词典的定价是 (元) 【巩固】 (2000年全国小学数学奥林匹克试题)商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是_千克【解析】 两个顾客买的货物重量是的倍数,剩下的一箱货物重量除以3应当余2,只能是20千克【巩固】 (华罗庚金杯赛模拟试题)求除以17的余数【解析】 先求出乘积再求余数,计算量较大可先分别计算出各因数除以17的余数,再求余数之积除以17的余数除以17的余数分别为2,7和11,【巩固】 求除以7的余数【解析】 法一:由于 (143被7除余3),所以 (被7除所得余数与被7除所得余数相等)而,(729除以7的余数为1), 所以故除以7的余数为5.【巩固】 (2007年实验中学考题)除以7的余数是多少?【解析】 由于,而1001是7的倍数,所以这个乘积也是7的倍数,故除以7的余数是0;因数89909192939495969798因数【巩固】 在图表的第二行中,恰好填上这十个数,使得每一竖列上下两个因数的乘积除以11所得的余数都是3【解析】 因为两个数的乘积除以11的余数,等于两个数分别除以11的余数之积因此原题中的可以改换为,这样上下两数的乘积除以11余3就容易计算了我们得到下面的结果:因数89909192939495969798因数37195621048进而得到本题的答案是:【例 2】 一个大于1的数去除290,235,200时,得余数分别为,则这个自然数是多少?【解析】 根据题意可知,这个自然数去除290,233,195时,得到相同的余数(都为)既然余数相同,我们可以利用余数定理,可知其中任意两数的差除以这个数肯定余0那么这个自然数是的约数,又是的约数,因此就是57和38的公约数,因为57和38的公约数只有19和1,而这个数大于1,所以这个自然数是19题型:余数综合应用【例 3】 (著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 4】 (圣彼得堡数学奥林匹克试题)托玛想了一个正整数,并且求出了它分别除以3、6和9的余数现知这三余数的和是15试求该数除以18的余数【解析】 除以3、6和9的余数分别不超过2,5,8,所以这三个余数的和永远不超过,既然它们的和等于15,所以这三个余数分别就是2,5,8所以该数加1后能被3,6,9整除,而,设该数为,则,即(为非零自然数),所以它除以18的余数只能为17【巩固】 (2005年香港圣公会小学数学奥林匹克试题)一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁? 【解析】 从任意三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是型的数,又是质数只有7,13,19,31,37,43,就容易看出:父43岁,母37岁,兄13岁,妹7岁【例 5】 (华杯赛试题)如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔他先试着每隔2孔跳一步,结果只能跳到B孔他又试着每隔4孔跳一步,也只能跳到B孔最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗? 【解析】 设想圆圈上的孔已按下面方式编了号:A孔编号为1,然后沿逆时针方向顺次编号 为2,3,4,B孔的编号就是圆圈上的孔数我们先看每隔2孔跳一步时,小明跳在哪些孔上?很容易看出应在1,4,7,10,上,也就是说,小明跳到的孔上的编号是3的倍数加1按题意,小明最后跳到B孔,因此总孔数是3的倍数加1同样道理,每隔4孔跳一步最后跳到B孔,就意味着总孔数是5的倍数加1;而每隔6孔跳一步最后跳回到A孔,就意味着总孔数是7的倍数如果将孔数减1,那么得数既是3的倍数也是5的倍数,因而是15的倍数这个15的倍数加上1 就等于孔数,设孔数为,则(为非零自然数)而且能被7整除注意15被7除余1,所以被7除余6,15的6倍加1正好被7整除我们还可以看出,15的其他(小于的7)倍数加1都不能被7整除,而已经大于1007以上的倍数都不必考虑,因此,总孔数只能是【例 6】 (2008年清华附中考题)已知n是正整数,规定,令,则整数m除以2008的余数为多少?【解析】2008能够整除,所以的余数是2007【例 7】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。【解析】 本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论