




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、一阶常微分方程模型人口模型与预测下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(),万人,万人。年198219831984198519861987198819891990人口(万)101654103008104357105851107507109300111026112704114333年19911992199319941995199619971998人口(万)115823117171118517119850121121122389123626124810要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。(2)建立中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。(3)利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。(4)利用MATLAB图形,画出两种预测模型的误差比较图,并分别标出其误差。【注】常微分方程一阶初值问题的MATLAB库函数为:ode45。语法为:t,Y =ode45(odefun,tspan,y0)三、高阶常微分方程模型饿狼追兔问题现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的两倍。要求:(1)建立狼的运动轨迹微分模型。(2)画出兔子与狼的运动轨迹图形。(3)用解析方法求解,问兔子能否安全回到巢穴?(4)用数值方法求解,问兔子能否安全回到巢穴?【注】常微分方程高阶初值问题的MATLAB库函数为:ode45。语法为:t,Y =ode45(odefun,tspan,y0)例如函数: function dy = rigid(t,y)dy = zeros(3,1); % a column vectordy(1) = y(2) * y(3);dy(2) = -y(1) * y(3);dy(3) = -0.51 * y(1) * y(2);设置选项:options = odeset(RelTol,1e-4,AbsTol,1e-4 1e-4 1e-5);求解得:t,Y = ode45(rigid,0 12,0 1 1,options);画出解函数曲线图形:plot(T,Y(:,1),-,T,Y(:,2),-.,T,Y(:,3),.)四、时间序列模型某一商场112月份的销售额(单位:万元)时间序列数据如下表所示。月份123456789101112实际销售额495355595051525251525359要求:(1)建立恰当的数学模型,并预测下年一月份(第13月)的销售额。(2)对所建立的几种预测方法作误差的分析与比较。【注】(1)多项式拟合的MATLAB库函数为:polyfit语法为:p,S = polyfit(x,y,n)p,S,mu = polyfit(x,y,n)例如:x = (0: 0.1: 5);y = erf(x);f = polyval(p,x);plot(x,y,o,x,f,-)axis(0 5 0 2)(2)自回归模型的MATLAB库函数为:ar语法为:m = ar(y,n)m ,refl = ar(y,n,approach,window)例如:y = sin(1:300) + 0.5*randn(300,1);y = iddata(y);mb = ar(y,4,burg);mfb = ar(y,4);五、多元回归模型设某公司生产的商品在市场一的销售价格为(元/件)、用于商品的广告费用为(万元)、销售量为(万件)的连续12个月的统计数据如下表所示。月份销售价格广告费用销售量11005.50552906.30703807.20904707.001005706.30906707.351057705.60808657.151109607.5012510606.9011511557.1513012506.50130要求:(1)选择恰当的模型,建立销售量关于销售价格和广告费用的关系模型。并利用MATLAB画出曲线图形。(2)设第13个月将该商品的销售价格定为80元/件,广告费用为7万元,预计该商品的销售量将是多少?并对其作统计上的误差分析。【注】多元线性回归模型的MATLAB库函数为:regress。语法为:b,bint,r,rint,stats = regress(y,X);例如:load mooreX = ones(size(moore,1),1) moore(:,1:5);y = moore(:,6);b,bint,r,rint,stats = regress(y,X);八、航空机票超订票问题某航空公司执行两地的飞行任务。已知飞机的有效载客量为150人。按民用航空管理有关规定:旅客因有事或误机,机票可免费改签一次,此外也可在飞机起飞前退票。航空公司为了避免由此发生的损失,采用超量订票的方法,即每班售出票数大于飞机载客数。但由此会发生持票登机旅客多于座位数的情况,在这种情况下,航空公司让超员旅客改乘其它航班,并给旅客机票价的20%作为补偿。要求:(1)假设两地的机票价为1500元,每位旅客 有0.04的概率发生有事、误机或退票的情况,问航空公司多售出多少张票,使该公司的预期损失达到最小?(2)上述参数不变的情况下,问航空公司多售出多少张票,使该公司的预期利润达到最大,最大利润为多少?九、传染病的传播问题SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。表 疫情的数据日期已确诊病例累计现有疑似病例死亡累计治愈出院累计4月20日33940218334月21日48261025434月22日58866628464月23日69378235554月24日77486339644月25日87795442734月26日988109348764月27日1114125556784月28日1199127559 784月29日1347135866834月30日1440140875905月1日15531415821005月2日16361468911095月3日17411493961155月4日180315371001185月5日189715101031215月6日196015231071345月7日204915141101415月8日213614861121525月9日217714251141685月10日222713971161755月11日226514111201865月12日230413781292085月13日234713381342445月14日237013081392525月15日238813171402575月16日240512651412735月17日242012501453075月18日243412501473325月19日243712491503495月20日244412251543955月21日244412211564475月22日245612051585285月23日246511791605825月24日249011341636675月25日249911051677045月26日250410691687475月27日251210051728285月28日25149411758665月29日25178031769285月30日252076017710065月31日252174718110876月16日2521319020536月17日2521519021206月18日2521419121546月19日2521319121716月20日2521319121896月21日2521219122316月22日2521219122576月23日2521219122776月1日252273918111246月2日252273418111576月3日252272418111896月4日252271818112636月5日252271618113216月6日252271318314036月8日252255018415436月9日252245118416536月10日252235118617476月13日25227118719446月14日2522418919946月15日2522318920156月7日252366818314466月11日252325718618216月12日25231551871876要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。(2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。(3)说明建立传染病数学模型的重要性。十、国土面积问题为了算出瑞士的国土面积,首先对瑞士地图作如下测量:以由西向东方向为轴,由南到北方向为轴,选择方便的原点,并将从最西边界点到最东边界点在轴上的区间适当地划分为若干段,在每个分点的方向测出南边界点和北边界点的坐标和,这样就得到了表中的数据(单位mm)。根据地图的比例我们知道18mm相当于40km,试由测量数据计算瑞士国土的近似面积,与它的精确值41288km比较。 表 瑞士地图测量数据7.0 10.5 13.0 17.5 34.0 40.5 44.5 48.0 56.0 61.0 68.5 76.5 80.5 91.044 45 47 50 50 3 8 30 30 34 36 34 41 45 4644 59 70 72 93 100 110 110 110 117 118 116 118 11896 101 104 106.5 111.5 118 123.5 136.5 142 146 150 157 158 43 37 33 28 32 65 55 54 52 50 66 66 68121 124 121 121 121 122 116 83 81 82 86 85 68十一、投入产出综合平衡分析设某地区国民经济系统仅由工业、农业和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表所示(数字表示产值,单位为亿元)。表 各个部门间的关系产出投入工业农业服务业外部需求总产出工业20202535100农业302045115210服务业1560/70145外部需求3511075总产出100210145要求:(1)建立投入产出系数表。(2)设有个部门,已知投入系数,给定外部需求,建立求解各部门总产出的数学模型。(3)如果今年对工业、农业和服务业的外部需求分别为150,250,170亿元,问这三个部门的总产出分别应为多少?(4)如果三个部门的外部需求分别增加5个单位,他们的总产出应分别增加多少?(5)如果对于任意给定的、非负的外部需求,都能得到非负的总产出,模型就称为可行的。问为使模型可行,投入系数应满足什么条件?十二、种群的繁殖与稳定收获种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。种群年龄记作当年年龄的种群数量记作,繁殖率记作(每个雌性个体一年繁殖的数量),自然存活率记作为一年的死亡率),收获量记作,则来年年龄的种群数量应为 要求:(1)若已知,给定收获量,建立求各年龄的稳定种群数量的模型(用矩阵、向量表示)。(2)设如要求为500,400,200,100,100,求。十四、湖水温度变化模型湖水在夏天会出现分层现象,其特点为接近湖面的水温度较高,越往下温度越低。这种上热下冷的现象影响了水的对流和混合过程,使得下层水域缺氧,导致水生鱼类的死亡。下表是对某个湖的观测数据。表 湖水观测数据深度/cm02.34.99.113.718.322.927.2温度/22.822.822.820.613.911.711.111.1要求:(1)湖水在10cm处的温度是多少?(2)湖水在什
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年室内装饰设计师(初级)考试试卷:室内设计色彩搭配与空间氛围
- 2025年天津市公务员录用考试审计专业专项练习试卷
- 2025年事业单位招聘考试综合类专业能力测试试卷(文秘类)备考经验
- 留学考试数学试卷
- 兰陵一中高考数学试卷
- 龙华区七下期中数学试卷
- 罗胖子数学试卷
- 2025数字基金面试题及答案
- 2025什么是省考环节考试题及答案
- 2025山西省高考试题及答案详解
- 华为-质量回溯培训教材
- 肾细胞癌诊断治疗指南解读
- 宜宾国企公开招聘综合能力测试题
- 2024年浪潮入职测评题和答案
- DB4201-T 569.6-2018 武汉市反恐怖防范系统管理规范 第6部分:城市轨道交通
- 化工有限公司3万吨水合肼及配套项目环评可研资料环境影响
- 2024年江苏省对口单招英语试卷及答案
- 洛阳民宿的分析报告
- 临时用电设备的安装与接地要求
- 国家基本药物临床应用指南(化学药品)2009年版
- 各大媒体联系方式(投诉举报提供新闻线索)
评论
0/150
提交评论