7.1正切 (3).doc_第1页
7.1正切 (3).doc_第2页
7.1正切 (3).doc_第3页
7.1正切 (3).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江科大附中“学展评”图式教学201415学年九年级(下)数学教学案 课题 7.1正切 主备:陈娟课型:新授审核:九年级数学组班级 姓名_1 学习目标:1.经历当直角三角形的锐角固定时,它的对边与邻边的比值都固定(即正切值不变)这一事实.2.能通过画图求出一个角的正切的近似值.3.能根据正切概念计算与直角三角形有关的简单问题.2 学习重难点:理解正切(tanA)概念,知道当直角三角形的锐角固定时,它的对边与邻边的比值是固定值这一事实。能运用正切概念进行有关计算。三 图式自构(一)自学教材P96-98页,完成下列新知梳理:如图在RtABC中,C=90,a、b分别是A的对边与邻边,我们把A的对边a与邻边b的比叫做A的 ,记作 ,即(二)尝试解决下列基础训练问题:1.如图:在RtABC中,C=90,a、b、c的关系是 A与B的关系为 2.如图:在RtABC中,C=90,B=30(1)若AC=5,则BC= ,= (2)若AC=10,则BC= ,= 3.相似三角形的性质:对应角 ,对应边 .4.思考 :从第2题的计算中你发现了什么?5.如果小明的身高为1.60m,并在同一时间测得小明与旗杆的影长分别为2m 、3.5m.你能求出旗杆的高度吗?四图式共建1.一般地,如果锐角A的大小确定,我们可以作出无数个含有A的RtAB1C1 , RtAB2C2 , RtAB3C3 (如图),那么图中: 的大小关系是 也就是说,如果直角三角形的一个锐角的大小确定,那么: .2.正切的定义:3.利用98页图7-8探究:当锐角越来越大时,的正切值怎样变化?例1分别求出下图直角三角形中A、B的正切值.例2一个三角形的三边分别是6,8,10,求最小角的正切值。例3 在正三角形ABC中,CD是高,求tan600,tan300的值(画出图形求解)思考:tan450= 五图式应用1. 求下列直角三角形中tanA值.52. RtABC中,C=90,A=30,AC=34,求BC的值.3. 如图,在RtABC中,C=90,BC=12,tanA=,求AB的值.六图式巩固1.根据图中条件分别求tanA的值:2.如图,在RtABC中,ACB=90,CDAB,(1)tanB = = =(2)已知:BD = 6,CD = 12,求tanA的值.3.在RtABC中,C=90,AB=15,tanA=,求AC和 BC的长.4.在等腰三角形ABC中,AB=AC=13,BC=10,求tanB的值.5.如图,在RtABC中,ACB=90,CD是AB边上的高,ABCDtanA= = =_;tanB= = =_;tanACD= =_=_;tanBCD= =_=_. 6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论