




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题: 等腰三角形 授课老师: 潮州市湘桥区太平中学 石木琴 教材: 人民教育出版社八年级教材课题等腰三角形1.教学目标知识目标:引导学生了解等腰三角形的概念;探索并掌握等腰三角形的两个底角相等,等腰三角形三线合一;懂得利用等腰三角形的性质进行简单的推理、判断和计算。能力目标:经历操作、观察、实验、猜想、验证等数学活动过程,初步培养学生分析问题、解决问题的能力,发展合情推理能力和初步的演绎推理能力。情感目标:让学生感受数学知识的形成过程,激发学生学数学的兴趣和求知欲。2.教学重点难点重点:理解并掌握等腰三角形的性质:等边对等角;三线合一。难点:等腰三角形三线合一的证明、运用。3.教学方法与手段教学方法:课堂教学要体现以学生的发展为本的精神,因此本节教学中运用探究发现法。为充分体现以学生为主体,老师为主导的原则,在教学中,无论是在性质的发现、证明,还是在性质的应用过程中,我都尽量做到让学生自己想、自己说、自己做。学生通过“想、说、做”这一系列活动,在掌握知识的同时,积极动脑、动口、动手,进行“探究式学习”,锻炼能力。教学手段:为提高课堂教学效率和质量,运用多媒体课件进行动态和直观的演示,激发学生的学习兴趣,符合教学论中的直观性和可接受性。4.教学过程教学内容师生活动设计意图(一)创设情景,复习引入1、什么是轴对称图形?2、欣赏含有等腰三角形的图片。学生朗读、欣赏图片让学生从感性上认识等腰三角形,激发学生学习的兴趣和求知欲。(二)探究活动1、引导学生动手折纸、剪纸,观察,归纳得到等腰三角形的概念:有两条边相等的三角形是等腰三角形。2、除了剪纸的方法,还可以借助圆规画出等腰三角形并介绍腰、底边、顶角、底角。学生动手剪纸、观察。教师引导学生从操作中得出等腰三角形的概念,用圆规画图,并介绍腰、底边、顶角、底角。同桌同学互相交流,指出自己制作的等腰三角形各部分的名称。 采用数学活动的方式引入新课更能提高学生兴趣,让每位学生都涌跃参与,领悟数学学习的价值。 同桌的交流,为学生主动学习提供时间和空间,加强同学间的交流合作。(三)归纳猜想1上面裁剪的等腰三角形是轴对称图形吗?2把上面裁剪的等腰三角形ABC沿折痕AD折叠,找出重合的线段和重合的角,并填写在课本P141的思考中:重合的线段 重合的角 3、你能发现等腰三角形的性质吗?说说你的猜想。学生根据自己裁剪的等腰三角形观察、思考,写出重合的线段和重合的角;教师引导学生分析重合的线段和重合的角。学生大胆猜测等腰三角形的性质,教师在学生猜想的基础上,完善、归纳出性质1和 性质2。让学生感受知识的形成,亲自参与“知识的再发现”过程,符合学生的心理特点。这样不但有利于提高学习的兴趣,而且对所学知识印象深刻。 教学内容师生活动设计意图(四)探究验证、简单运用1、 引导学生把猜想1“等腰三角形的两个底角相等”用数学符号表达为:已知: ABC中,AB=AC。求证:B= C. 2、由上面操作的启发,引导学生通过添加不同辅助线证明性质1。3、受性质1证明的启发,你能证明猜想2吗?4、相信你能行: 如图,在下列等腰三角形中,分别求出它们的底角的度数。 5、变式练习:等腰三角形一个角为30,它的另外两个角为_.等腰三角形一个角为100,它的另外两个角为_.、如图,ABC是等腰直角三角形(AB=AC,BAC=90),AD是底边BC上的高,则B=_、C=_、BAD=_、DAC=_。图中的线段BD和CD相等吗?_根据是_教师引导学生分析性质1的已知和结论,并转换成数学符号。教师纠正、补充学生的发言,引导学生由上面的操作过程获得启发,可以通过三种不同的辅助线(顶角平分线、底边上的中线、底边上的高),得到两个全等三角形,从而证明性质1。学生讨论性质2的证明。教师参与讨论,认真听取学生分析,引导学生由性质1的证明过程证明性质2。 学生思考、解答。教师提问、点评。 性质1的证明目的是培养学生的语言转换能力并渗透转换的思想。性质2要证明“三线合一”,对初学证明的学生尚有一定困难,因此让学生分小组讨论,探究。让学生自己发现性质的正确性,有助与加深对性质的理解和掌握。增加两道变式练习,目的是 拓展、提高知识深度,并培养学生分类讨论的思想。教学内容师生活动设计意图(五)应用巩固1、例题:如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求ABC各角的度数。2、练习:如图,在ABC中,AB=AD=DC,BAD=26,求B和C的度数。3、课外讨论: 猜想一下,等腰三角形底边中点到两腰的距离相等吗?为什么? 如果DE、DF分别是AB、AC上的中线或ADB、 ADC的平分线,它们还相等吗? 等腰三角形中哪些线段相等?教师引导学生详细分析题目,然后给出解答过程。学生独立思考并完成。教师点评。学生课外以小组为单位进行讨论。培养学生正确运用所学知识的应用能力,增强应用意识,参与意识,巩固所学性质。“讨论部分”需要学生把文字描述转化为数学语言和几何图形,再通过上面的操作,猜想、推理,要求较高。因此鼓励学生课外以小组为单位进行学习,培养学生的合作精神,鼓励开展多种学习方式。教学内容师生活动设计意图(六)小结评价1、小结:有两条边相等的三角形叫做等腰三角形.等腰三角形的性质: “等边对等角”和“三线合一”等腰三角形中常见的辅助线作法等腰三角形在生活中的应用.2、作业:课本P149150必做题:第1、2、8题选做题:第13题数学日记姓名日期今天数学课的课题所学的数学知识疑惑自我评价在生活中的应用先由学生思考、回顾所学内容,教师再归纳、总结。采用谈话式小结,有利于沟通师生之间的情感,给学生一个知识梳理的空间,培养学生的知识整理能力与语言表达能力,帮助学生对学习结果进行自我评价与反思。教学设计说明本小节“等腰三角形”是第十四章“轴对称”的第三节。根据新的教育理念,以轴对称图形为切入点,采用“动手实践、自主探索与合作交流”的教学方式,让学生欣赏美观大方的等腰三角形在生活中的应用,激发学生学习的兴趣和求知的欲望,让学生体会数学与生活的密切联系。接着让学生通过“实验观察猜想验证”这一系列的活动,让学生亲身感受“知识的再发现”过程,完成了从感性到理性的知识发生发展的认知。在整个教学过程中,鼓励每个学生积极参与实践,学生的手、口、脑、耳各种器官并用,充分挖掘学生的内在潜力,极大地调动学生学习的主动性和积极性。在设计例题和练习时,围绕本课的教学目标,增加变式训练,既突出了教学的重点,又培养了学生分类讨论的思想。对教材的几点处理: 学生对等腰三角形虽然不陌生,但从轴对称图形和它的“美”引入课题,不仅激发学生学习的兴趣,而且起到承前启后的作用。 受性质1证明的启发来证明性质2虽然不难,但学生第一次接触“三线合一”的证明,开始会无从下手,因此教学时让学生讨论交流,合作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共卫生专业资格认证考试备考策略
- 2025年急救车内药品类型及作用考核试题附答案
- 碎石生产质量控制与检验方案
- 园林绿化工程施工方案
- 肉类加工工艺技术与创新方案
- 老旧小区改造项目风险评估与应急预案方案
- 室内装饰施工技术与工艺方案
- 学生宿舍楼建筑施工人员培训与管理
- 2025年边缘AI任务卸载优化考题(含答案与解析)
- 2025年商业写字楼智能化初步设计评估与智慧建筑物联网应用报告
- 儿童过敏性紫癜饮食护理讲课件
- 肝脏的解剖和分段分叶
- 校外集体配餐管理制度
- 2025至2030年中国口腔喷雾剂行业市场竞争态势及发展前景研判报告
- 关于卫生院“十五五”发展规划(详细版)
- T/CECS 10163-2021纤维增强聚氨酯复合材料杆塔
- 机械设备安装施工服务承诺书范文
- 露天矿山安全培训课件
- 2025-2030全球及中国工程CAD软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025浙江1月卷读后续写及满分语料10类40句 (真假小偷) 解析版
- 构音训练测试题及答案
评论
0/150
提交评论