高一数学二次函数在闭区间上的最值于祝.ppt_第1页
高一数学二次函数在闭区间上的最值于祝.ppt_第2页
高一数学二次函数在闭区间上的最值于祝.ppt_第3页
高一数学二次函数在闭区间上的最值于祝.ppt_第4页
高一数学二次函数在闭区间上的最值于祝.ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数在闭区间上的最值 石家庄市42中学于祝 高中数学 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 更多资源 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 5 若x t t 2 时 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 5 若x t t 2 时 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 5 若x t t 2 时 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 5 若x t t 2 时 求函数f x 的最值 例1 已知函数f x x2 2x 3 1 若x 2 0 求函数f x 的最值 2 若x 2 4 求函数f x 的最值 3 若x 求函数f x 的最值 4 若x 求函数f x 的最值 5 若x t t 2 时 求函数f x 的最值 评注 例1属于 轴定区间变 的问题 看作动区间沿x轴移动的过程中 函数最值的变化 即动区间在定轴的左 右两侧及包含定轴的变化 要注意开口方向及端点情况 例2 求函数f x ax2 2a2x 1 a 0 在区间 1 2 上的最值 例2 求函数f x ax2 2a2x 1 a 0 在区间 1 2 上的最值 例2 求函数f x ax2 2a2x 1 a 0 在区间 1 2 上的最值 例2 求函数f x ax2 2a2x 1 a 0 在区间 1 2 上的最值 例2 求函数f x ax2 2a2x 1 a 0 在区间 1 2 上的最值 例2 求函数f x ax2 2a2x 1 a 0 在区间 1 2 上的最值 评注 例2属于 轴变区间定 的问题 看作对称轴沿x轴移动的过程中 函数最值的变化 即对称轴在定区间的左 右两侧及对称轴在定区间上变化情况 要注意开口方向及端点情况 例3 已知函数f x x2 ax b x 0 1 试确定a b 使f x 的值域是 0 1 例3 已知函数f x x2 ax b x 0 1 试确定a b 使f x 的值域是 0 1 例3 已知函数f x x2 ax b x 0 1 试确定a b 使f x 的值域是 0 1 例3 已知函数f x x2 ax b x 0 1 试确定a b 使f x 的值域是 0 1 例3 已知函数f x x2 ax b x 0 1 试确定a b 使f x 的值域是 0 1 总结 求二次函数f x ax2 bx c在 m n 上的最值或值域的一般方法是 2 当x0 m n 时 f m f n f x0 中的较大者是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论