




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法(三)-公式法,因式分解法知识讲解(基础)【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式: 当时,原方程有两个不等的实数根; 当时,原方程有两个相等的实数根; 当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤: 把一元二次方程化为一般形式; 确定a、b、c的值(要注意符号); 求出的值; 若,则利用公式求出原方程的解; 若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程,用配方法将其变形为:. 当时,右端是正数因此,方程有两个不相等的实根:. 当时,右端是零因此,方程有两个相等的实根:. 当时,右端是负数因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释: (1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次 因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:必须将方程的右边化为0;方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程(1) x2+3x+1=0; (2); (3) 2x2+3x-1=0【答案与解析】 (1) a=1,b=3,c=1x=x1=,x2=(2)原方程化为一般形式,得,即, (3) a=2,b=3,c=1b24ac=170x=x1=,x2=【总结升华】用公式法解一元二次方程的关键是对a、b、c的确定用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a,b,c的值并计算的值;(3)若是非负数,用公式法求解举一反三:【变式】用公式法解方程:(2014武汉模拟)x23x2=0【答案】解:a=1,b=3,c=2;b24ac=(3)241(2)=9+8=17;x=,x1=,x2=2用公式法解下列方程:(1) (2014武汉模拟)2x2+x=2; (2) (2014秋开县期末)3x26x2=0 ; (3)(2015黄陂区校级模拟)x23x7=0【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】 解:(1)2x2+x2=0,a=2,b=1,c=2,x=,x1=,x2=(2) a=3,b=6,c=2,b24ac=36+24=600,x=,x1=,x2= (3)a=1,b=3,b=7b24ac=9+28=37.x= = ,解得 x1=,x2=【总结升华】首先把每个方程化成一般形式,确定出a、b、c的值,在的前提下,代入求根公式可求出方程的根举一反三:【变式】用公式法解下列方程: ;【答案】解:移项,得 , , ,类型二、因式分解法解一元二次方程3用因式分解法解下列方程: (1)3(x+2)22(x+2); (2)(2x+3)2-250; (3)x(2x+1)=8x3【思路点拨】 用因式分解法解方程,一定要注意第1小题,等号的两边都含有(x+2)这一项,切不可在方程的两边同除以(x+2),化简成3(x+2)=2,因为你不知道(x-2)是否等于零.第2小题,运用平方差公式可以,用直接开方也可以.第3小题化成一般式之后,再运用分解因式法解方程.【答案与解析】 (1)移项得3(x+2)2-2(x+2)0,(x+2)(3x+6-2)0 x+20或3x+40, x1-2,(2)(2x+3-5)(2x+3+5)0, 2x-20或2x+80, x11,x2-4 (3)去括号,得:2x2+x=8x3,移项,得:2x2+x8x+3=0合并同类项,得:2x27x+3=0,(2x1)(x3)=0,2x1=0或 x3=0,x2=3【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法(2)可用平方差公式分解4解下列一元二次方程: (1)(2x+1)2+4(2x+1)+40; (2)【答案与解析】(1)(2x+1)2+4(2x+1)+40,(2x+1+2)20 即, (2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)0,即(x-1)(x+2)0,所以,【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法如 (1)可以用完全平方公式用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x1这个根举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)【答案】(1)(x+8-2)(x+8-3)=0 (x+6)(x+5)=0 X1=-6,x2=-5. (2)3x(2x+1)-2(2x+1)=0 (2x+1)(3x-2)=0 .5探究下表中的奥秘,并完成填空: 一元二次方程 两个根二次三项式因式分解 x22x+1=0 x1=1,x2=1 x22x+1=(x1)(x1) x23x+2=0 x1=1,x2=2 x23x+2=(x1)(x2) 3x2+x2=0 x1=,x2=13x2+x2=3(x)(x+1) 2x2+5x+2=0 x1=,x2=2 2x2+5x+2=2(x+)(x+2) 4x2+13x+3=0 x1=,x2= 4x2+13x+3=4(x+)(x+)将你发现的结论一般化,并写出来【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025房地产公司开发项目股权整合及增资拓展合同
- 2025年智能家居家居定制房屋半包装修服务合同
- 2025版金融行业客户经理劳动合同集锦
- 2025年商铺租赁中介佣金分配合同模板
- 2025年度存量房买卖合同-存量房交易税收筹划服务协议
- 2025年度石渣石粉绿色矿山建设与销售合同
- 2025版生物科技研发与应用三方合伙协议书
- 2025版教育辅助软件维护与在线学习平台建设合同
- 2025版环保生产辅材采购及售后服务合同
- 2025年度企业员工食堂膳食质量采购合同
- 消毒供应质量控制指标(2024年版)
- 中国帕金森病步态障碍管理专家共识(2025年)解读课件
- 企业破产流程
- 《过程审核讲义》课件
- 中医内科学虚劳培训课件
- 人教版新目标九年级上英语教学计划
- 湘科版科学五年级上册教学计划教学设计及教学总结
- 《PRP配合左归丸治疗肝肾亏虚型膝骨关节炎的临床观察》
- 2024建筑工程资料承包合同范本
- 《汽车电路知识与基本操作技能(第2版)》中职全套教学课件
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
评论
0/150
提交评论