




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电脑主机电源 ATX电源的工作原理(附图)电源开机电路和保护电路PS-ON开机电路为控制电源中主要电路的工作与停止状态保护电路是在输出出现过流过压时(如输出短路,输出电压偏高偏低时)控制IC进入待机状态使两只开关管截止。 当待机状态时,PS-ON为高电平导通通过电阻R36加到Q11的基极,Q11也导通,TL494 12脚5V电压通过Q11的C-E极加到TL494的4脚,处于保护状态,无脉冲信号输出,Q1、Q2都处于截止状态,当ATX得到开机信号民后,PS-ON为低电平,约为0V,Q10截止,Q11基极失去偏压因此截止,TL494 4脚变为低电平(0V),TL494输出触发脉冲,Q1、Q2得到脉冲信号开始工作。 保护电路的工作原理与开机电路基本相同,Q6、Q7采集保护信号利用Q5的导通,4脚处于高电平,TL494 处于保护电路正常时Q5截止。 PW-OK信号形成电路 PW-OK电路由一块LM393内部的两个电压比较器组成,比较基准电压为TL494 2脚电压约2。6V,当待机时即PS-ON为5V时,反向输入端(6脚)比同相输入端(5脚高,7脚输出低电平约为0V,3脚0V,1脚输出低电平约0V,当启动时,PS-ON变为0V,6脚变0V,比5脚低,7脚输出高电平,向C18充电当C18两端电压达到一定时,电路翻转,1脚输出高电平,约为5V,信号输出,在关机时,PS-ON变为高电平与开机相反,电路再次翻转其1脚输出低电平,而电源主输出端各滤波电容都很大,电压相对来说要延迟一会儿。 对ATX电源控制电路的剖析 本文结合所附电路图对ATX电源控制电路的工作原理进行了较详细的阐述,望能对广大维修者有所帮助。 检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。 一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头(图1)9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3。6V、4。6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3。3V、5V、12V有输出,开关电源风扇旋转。上述操作亦可作为选购ATX开关电源脱机通电验证的方法。 二、 控制电路的工作原理 ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照图2。 1。辅助电源电路 只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6。8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。 2。PS-ON和PW-OK、脉宽调制电路 PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电平3。6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3。3V、5V、12V的输出电压。受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3。3V、5V、12V的输出电压。 推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可靠截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON信号控制。 PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60充电来建立,随着C60充电的逐渐进行,IC5的3脚控制电平逐渐上升,一旦IC5的3脚电位大于2脚的固定分压比,经正反馈的迟滞比较器,1脚输出高电平的PW-OK信号。该信号相当于AT电源的PG信号,在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PW-OK电源完好的信号后启动系统。在主机运行过程中若遇市电掉电或用户关机时,ATX开关电源+5V输出端电压必下跌,这种幅值变小的反馈信号被送到IC1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使IC1的反馈控制端3脚电位下降,经R63耦合到Q21的基极,随着Q21基极电位下降,一旦Q21的e、b极电位达到0。7V,Q21饱和导通,IC5的3脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,IC5的输出端1脚将立即从5V下跳到零电平,关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。 3。自动稳压控制电路IC1的1、2脚电压取样放大器正、负输入端,取样电阻R31、R32、R33构成+5V、+12V自动稳压电路。当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1的1脚和2脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在PWM比较器进行比较放大,使8、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压稳定。IC1的电流取样放大器负端输入15脚接稳压5V,正端输入16脚接地,电流取样放大器在脉宽调制控制电路中没有使用。 电源噪声滤波器电路 2009-12-22 来源:互联网电源噪声滤波器(PNF)是一种新型器件,它能有效地抑制交流电网噪声,提高电子设备的抗干扰能力和系统的可靠性。其作用是双向的,一方面消除或削弱来自交流电网的噪声干扰。保证电子设备的正常运行;另一方面可以防止电子设备本身产生的噪声窜入交流电网。由于多种因素可以在交流电网上产生高频噪声干扰信号,这些高频干扰信号将通过电源窜入电子设备中,可能使放大电路的信噪比大大下降,出现非线性失真,也可能使数字电路以及计算机系统因干扰而产生逻辑混乱,导致不能正常工作。这种高频干扰通常被称为传导干扰,它又分为常态干扰和共模干扰。常态干扰又称对称干扰,是指两根电源导线之间出现的干扰,其干扰频率相对较低。共模干扰又称非对称干扰,是指每根导线与地(或机壳)之间出现的干扰,非对称性干扰信号干扰频率较高。消除或削弱传导干扰的方法通常就是在电源与电器设备之间加装电源噪声滤波器。 图(a)所示为电源噪声滤波器典型电路。其中,C1的作用是滤除电源导线中的对称干扰。C2、C3与L组成对称性霄型低通滤波器,工频5060Hz交流电可以直接通过,而对常态干扰脉冲却呈现极高阻抗,它可以阻止电源网络中的常态干扰信号进入电子设备,同时也可阻止各种电子设备中产生的对称性干扰信号进入电源网络,C4、C5则是用来消除负载回路中产生的非对称干扰。 图(b)是一种复合式电源噪声滤波器。它是由两级噪声滤波器组成,因此滤波效果更好。 图(c)是在上述的电源噪声滤波器的进线端以及进线端与地之间各并联一只压敏电阻,有效地抑制电网出现的浪涌电压。压敏电阻是一种过压保护元件,对于过电压脉冲响应快,响应时间仅为几至几十纳秒,耐冲击电流的能力强,通过电流量可达到100A至20kA,而在电压低于过压值时,漏电流仅为几至几十微安。因此用它来吸收浪涌电压具有极佳的效果。压敏电阻的标称值可根据具体电路的浪涌电压的幅度来确定一只特殊的电源噪声滤波器。常见压敏电阻的标称值有18、22、24、27、33、39、47、56、82、100、120、150、200、216、240、250、270、283、360、470、850、900、1100、1500、1800V等规格。 电源容量不足容易引起故障 来源:网络 接触到一台电脑,cpu是奔四1。7的,机器本主反映最近2、3个月经常莫明其妙的死机、重启。原先判断为病毒所致,于是上了几种杀毒软件,也没有查出毛病,后来又将系统重新安装几次仍然没有解决问题。怀疑到硬件,测量电源电压正常,将所有的板卡硬盘都更换过,故障依旧,于是怀疑到电源故障。最后找来一个功率大一点的电源更换,故障排除。所以电脑故障以后,不能忽略电源功率不足的影响 本文来自:/Article/hard/power/201002/14376。html 电脑电源各路输出电压的作用及规格简述 电脑电源各路输出电压的作用及规格简述来源:网络33V: 最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PS电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等。从第二代奔腾芯片开始,由于CPU的运算速度越来越快,Intel公司为了降低能耗,把CPU的电压降到了3。3V以下。为了减少主板产生热量和节省能源,现在的电源直接提供3。3V电压,经主板的电压转换电路变换后用于驱动CPU、内存等电路。 5V: 目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路。包括磁盘、光盘驱动器的控制电路。 12V: 用于驱动磁盘驱动器马达、散热风扇,或通过主板的总线槽来驱动其他板卡。在最新的P4系统中,由于P4处理器对能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其他电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。 12V: 主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A。 5V: 在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A。在许多新系统中已经不再使用-5V电压,现在的某些形式电源一般不再提供-5V输出。 5V StandBy: 最早在ATX提出,在系统关闭后,保留一个+5V的等待电压,用于电源及系统的唤醒服务。以前的PSII、AT电源都是采用机械式开关来开机关机,从ATX开始(包括SFX)不再使用机械式开关来开机关机,而是通过键盘或按钮给主板一个开机关机信号,由主板通知电源关闭或打开。 由于+5V Stand-by是一个单独的电源电路,只要有输入电压,+5VSB就存在,这样就使电脑能实现远程Modem唤醒或网络唤醒功能。最早的ATX1。0版只要求+5VSB达到0。1A,随着CPU及主板的功能提高,+5VSB 0。1A已不能满足系统的要求,所以Intel公司在ATX2。01版提出+5VSB不低于0。72A。随着互联网应用的不断深入,一些系统要求+5VSB提供2A、3A,甚至更大的电流输出,以保障系统功能的实现,因此对电源提出了更高的设计要求。 为了保证输出电压的稳定,ATX电源内部设计了一套补偿电路,能够根据输出电压下跌的幅度自动进行补偿来抵消输出电压的下降,不过绝大多数的ATX电源并没有为每一路输出电压提供单独的稳压电路,而是同时补偿,这样就容易出现一个特殊的现象,比如+3。3V、+5V和+12V中的+5V因为负载太大而导致输出电压开始下降,电源会同时增加这三路的输出电压,并不会单独对+5V进行控制,其结果必然导致+3。3V和+12V的输出电压过渡补偿而超过额定的电压,当电源设计欠佳或输出功率不足时这种特有的现象就更加明显! 实际使用中输出电压下降与上升的现象往往会同时出现,其中负载大的一路其输出电压往往小于额定值而其他输出电压则会高于额定值,如果电源无法满足电脑硬件的需要这种电压的变化就会更加明显。 一、 电源输出电压的合理波动范围 电源输出的正电压,合理的波动范围在-5%+5%之内,而负电压的合理波动范围在-10%+10%。 +5V:4。755。25V +3。3V:3。143。46V +12V:11。412。6V -5V:-4。5-5。5V -12V:-10。8-13。2V 二、 电源输出波动的重要性 电源输出电压的稳定性,是电源的一个重要指标,但绝不是判断一款电源优劣的唯一指标。电源性能指标非常繁多,电压的稳定性只是其中一项。 只要电源输出在合理的范围内,对电脑配件都不会造成负面影响,这时电压的波动范围在1%和5%的意义是一样的,过分地关注波动的大小是不必要的。但波动的相对大小,侧面反映了电源的负载能力,波动率相对越小的电源,其实际的最大输出功率可能越大,毕竟,输出电压超出规定范围时的输出功率是没有益处的。 相对来说,电压偏高比电压偏低更具有危险性,电压偏低至多引起电脑工作的不正常,而电压偏高则可能烧毁硬件。 三、 不同的负载,其波动状况不一样 很显然,电源输出电压的波动大小,与电源的负载是息息相关的。 1、 INTEL系统 INTEL P4处理器功耗较高,有的要达到60W左右,如果从+5V取电,则+5V需要提供高达12A的电流,对电源+5V输出的要求较高,而从电源的+12V取电,只需要6A的电流,因此INTEL在主板上增加了P4专用的供电接口规范,改由+12V为CPU供电。 使用INTEL P4的CPU,由于+12V端的负载较重,会导致+12V的下跌,电源此时会自动对+12V进行补偿,但同时会导致+5V的升高。 2、 AMD系统 AMD的CPU普遍从+5V取电,使得电源+5V负载较重而出现下跌,电源的补偿电路自动对+5V进行补偿,结果会导致+12V的升高。 3、 设备功耗的影响 除了CPU,其它设备的功耗也会影响输出电压的波动。例如,硬盘和光驱使用的是+5V和+12V供电,其中+5V为电路部分供电,+12V为马达供电,不同的硬盘或光驱对+5V、+12V供应的电流大小的要求不一样,有的需要+5V提供较大点的电流,而有的则需要+12V提供较大点的电流,这都会对电源的输出电压波动有影响。 还有一些显卡,功耗也特别惊人,对+5V或者+3。3V的要求也很高,这也会影响输出。 4、 相同的配置,波动也会不同 有实验显示,一台电脑,仅仅更换一块完全相同型号的主板,更换前后电源输出电压也会有不同。 5、 电源在使用过程中的电压波动 电脑在使用过程中,所消耗的功率不是固定在一个定值,也是不断波动的,电脑消耗功率的波动,同样也会引起电源输出电压的波动。玩大型的3D游戏,显卡消耗的功率要远高于做文字处理时所消耗的;看影碟时光驱消耗的功率较高。 因此,电源输出电压波动的大小,与电脑的配置的具体配置以及使用等都有极大的关系,抛开电源的周边环境谈电源输出电压的波动是没有多大意义的。 四、 主板BIOS和软件检测的准确性 主板BIOS和一些软件检测出来的电压未必是准确的,但可以作为参考。从网友提供的截图看,BIOS或软件检测存在着一些缺陷。譬如,很多软件对+3。3V检测的结果实际上反映的是内存的外部电压,而相当一部分软件对电源输出的负电压根本不能检测,显示的数值偏差过大。BIOS或软件检测的正电压如+5V等,和实际电压也存在偏差,偏差值通常随负载的增大而增大,偏差率有时能达到1个百分点。有实验表明,BIOS或软件检测的电压与实际电压至少会产生0。02V的偏差。 五、 电源波动是可调的吗? 答案是肯定的。厂家在生产电源时,只要波动在合理的范围,都视为合格产品,而很少会精益求精把波动控制在更小范围,因为从厂家的角度看,范围内的波动,1%和5%的意义是一样的。 电源的波动幅度,与电源的原材料是相关的。譬如,电源PCB板上的电位器,就可以调整输出电压,当输出电压偏低时,可以手动调高输出。做工比较足的电源通常都会有电位器,而劣质电源上是看不到的。一般来说,做工较足的电源更容易实现输出电压的更稳定,但这并不意味做工越足,输出电压越稳定。 六、环境对波动的影响 电网电压的变化,对输出电压有影响,这就涉及到电源的另一个性能指标:电压调整率。电源适应电压从最低点(通常是180V)过渡到最高点(通常是264V)时,输出电压的变化不能太大,一般要求控制在2%以内。 温度也会影响波动。环境温度较高时,电子元件会生产温漂,影响输出电压的稳定性。 来自:() /Article/hard/power/201002/14392。html电脑的旧ATX电源改充电器应该很不错的 电压5-25V可调,电流8A,电压还想更高,就把开关变压器拿下来加几圈, 找个旧电脑的AT或ATX电源,电路图大多差不多,大多都是用TL494推动的,变动1脚对地的 把改造过程发布出来供大家参考 那你这充电器功率也太大了吧怎么改,好人做到底,参考。 不错,顶一下 按2004年的电子报试过,用的是康柏AT电源,没成功!主要原因是保护电路太复杂!电压一高就保护了! 用三阶段智能充电模块即可,模块内有提高ATX电源过压保护点的电路,可以解决此问题。我QQ184144754,谁愿意相互交流下?我四川江油的 可先取下LM339或LM393保护电路的集成块 调高电压前要换掉所有输出的滤波电容,那些耐压不到25V的都要换,输出的高速大功率二极管或肖特基二极管的功率耐压也要查看一下 取下LM339或LM393保护电路的集成块,电源不工作,风扇不转,请教怎么解决?谢谢了! 有懂的朋友请给指点一下,谢谢了! 我认为取下保护芯片,不妥,输出有波动,容易损怀设备。 个人认为,最好是调节保护芯片的取样值来解决。 能不能把最高输出电压改到15v,这样就可能成为一个带最高限压的充电器了?电瓶就不怕充坏了吧? 我改过好多个,很成功。上面就是我改造过程的帖子,及有关的帖子。 希望对大家有所帮助。 谁再不明白,就直接提问好了。 谁有没有ATX电源的PCB板图啊? ATX电源改普通充电器容易,若改成智能充电器,不加智能充电电路板,是不可能做成的。 改了这么多?自己重新做的吧?呵呵我有办法快速改变ATX电源电压输出!很简单PC电源改12V充电器PC电源有AT、ATX两种,结构大同小异。 它都是基于PWM开关电源的原理,标称功率都在200W以上,都有12V8A的稳压输出。 所以,用它来改造12V电瓶的充电器,是比较容易的。 又因为旧的PC电源20元内可以买到,用它改造时, 又是很物美价廉、经济实惠的。 大部分的PC电源都是基于TL494+LM339芯片的。 本文就以此结构为例。 下面先认识一下TL494,下图就是它的内部结构图。 (此图内部有几个小差错,但基本不影响对TL494的认识。) TL494是一种定频PWM电路,它包含了开关电源所需的全部功能。 广泛应用于各式开关电源之中。 主要特征:集成了全部的脉宽调制电路。 内置锯齿波振荡器,外置振荡元件仅阻容各一。 内置两组误差放大器。 内置5V基准电压源。 可调整死区时间。 内置双功率晶体管可提供双500mA的驱动能力。 推挽或单端两种输出方式。 下面开始改造。 改造时,改动越少,越容易成功。下面是“改动最少”的方案。 首先,旧PC电源应当是无故障的。 一般风扇转动正常,电源就基本正常。 如果能以12V的汽车灯泡(常见的是21W)测试,就更加准确。 TL494的12#(表示12脚,以下同)是电源端,7-40V都是正常的。 7#是“地”端。 14#是5V基准电压端。 5#、6#是外接振荡阻容端。 8#、9#、10#、11#、13#是输出部分。 所以,5#-14#各司其职,功能明确,接法相对固定,一般不用改动。 2#、3#一般也不用改动。 4#一般是接“保护电路”的。 保护电路一旦工作,电源就会处于“故障”状态。 所以,最简单的方法就是“除去保护电路”,将4#直接“接地”。 如果你能确认4#没有与“保护电路”相“勾结”,就可以不动4#。 15#、16#一般是分别接14#、地,此时就不用改动。 15#、16#也有接“保护电路”的,一般也不用改动。 为防止“保护电路捣乱”,“分别接14#、地”就可“去掉保护电路”。 1#是取样输入端,原电路一般是比较复杂的。 改造时,保留1#接地的“下取样电阻”, 1#与12V输出之间连接“上取样电阻”。 1#上的其它电阻全部断开。 “上取样电阻”增大时,输出电压应当增高。 一般情况下,“上取样电阻”的初始值以“下取样电阻”的4倍为宜。 如输出电压超过20V时,则改取2倍。 仔细调整“上取样电阻”,使输出电压调整到13V6-13V8。 一个“恒压+浮充”的12V电瓶充电器就算完成了。 此充电器的内阻很低,负载性能很好。 它的充电电流可达到8A以上。 在恒压充电时,应当注意, 过大的“初始电流值”,会影响电瓶寿命。 LM339是个四比较器。 它的任务是产生与计算机有关的几个信号, 及参与“保护电路”的工作。 改造充电器时,完全可以不考虑它的存在。 主要应注意,别让它“参与的保护电路”,干扰TL494的工作。 其它几路电压输出,也完全可以不理睬它。 如果你能明白相应的“保护电路”,并加以保留, 则改造后的电源将更加完善。 看到您更改方案,很详细。 等过完春节(要回老家) 按照您的方案弄几个试一下。 在网上发现的类似的文章,转来也供大家参考。 原文地址:/bbs/ReplyReply。aspx?id=28935 例子是改13。8V的,模仿时注意安全,以下为转贴:【oxalis】 - 2006-5-14 22:28:45 AT电脑电源改车台电源最简方法(附电路图) 大力水手 国产的386、486、586的AT电源基本上可以通用这个方法改造,但有个别进口的电源(如我手头的一台286用的老式AT电源)因电路结构差别太大而不适用。 附图是一典型的AT电脑电源,不用理会电路的原理与形式,按以下操作即可成功:1、拆去L2、C22;有些机型在C22两端还并联了一只100欧姆1W的电阻(本图中没有),也要拆下; 2、在+12V输出端与+5V输出端之间跨接一只8。5V左右的稳压二极管; 3、改造基本完成,从原+12V输出端可得到稳定的13。5电压输出。 说明:1、如果没有8。5V的稳压管,可以用5-8V的稳压二极管,再串联二极管和发光二极管得到8。5V左右的总压降。使用发光二极管还兼有指示灯和美观作用。 2、-12V、-5V、+5V的电压都要保留,保护电路检测需要,否则会因保护电路动作而不能工作;各种型号的电源电路不完全一样,如有的-5V是直接从开关变压器的5V绕组反向整流产生,有的-12V还使用了7912稳压;有的没有安装过流保护检测用的T3。 3、尽量选用开关变压器体积大的,+12V整流管粗的,220V输入端滤波元件安装完整的的AT电源来改造,当然,也可以采用加装或更换的办法提高电源的性能。 不推荐使用ATX电源,因为ATX电源的控制电路相对而言比较复杂,部分型号的开关变压器有3组电压输出,可能会影响12V绕组的负载能力。以下是一篇。/bbs/ReplyReply。aspx?id=29017 ok。我又转了一篇来看: 电脑ATX电源改13。8V通信用电源! 1、先找到TL494集成电路的第一脚。 2、找几个5K-50K的不同阻值的电阻(视不同的开关电源)备用。 3、从以上备用的电阻中找一个30K左右的电阻,焊到TL494的第一脚和地之间。 4、将一个电压表调到直流电压档,接到电源输出的“黄”线和“黑”线间,等会儿将用它测输出电压(开关电源改造前这儿的电压应为12V)。 5、将电源插头插上。 再找一根细导线,将电源输出排线(接电脑主板的那个插头)上的“蓝”线和“黑”线短接(使开关电源工作)。 6、观察电压表电压,这时应比改造以前略大(略大于12V),若输出电压升高得不是很明显或还不到13。8V,再逐渐减小刚才加到TL494第一脚和地之间的那个电阻,直到电压表上的电压指示出13。8V为止。当然,如果第一次焊上电阻后,电压超过了13。8V,这时就要逐渐增大这个电阻,使之降到13。8V为止。(我的开关电源这个电阻取了15K时为13。9V,不同的开关电源这个电阻是取得不一样的,要多拿几个电阻从大到小去试。当然也可以用一个电位器来调,但这时要注意电位器不要调得太小了。) 原理:TL494第一脚是开关电源输出电压的取样端,当这个脚对地加上一个电阻后,取样电压就下降了,低于了平衡点。这样,开关源就会输出一个比之前更高的电压,使得TL494第一脚刚才降低的电压重新恢复到平衡点,最后稳定下来,输出比12V更高一点的电压。 注意:1、开关电源内部很多地方都是高压,打开通电操作时一定要特别小心! 2、加上去的这个电阻一定要从大到小去调(一般都在几K以上),这个电阻过小时,开关电源就要过压保护(一般电压超过14。5V左右电源就保护了),这时电源反而无电压输出了。 我用这种方法改了几个电脑电源了,作为V段机和U段机的电源性能是相当好的,对机器没有一点干扰。性价比也是很高的!输出电流在7A-10A,比花过上百元钱拿变压器做个电源划得来。我们这边到电脑城只花20元就可以弄回一个这样的二手电源。 还抄来一条回复,见下:还有一点你没注意吧?PC电源里+5V绕组是主绕组,PC电源里+5V绕组是主绕组, 也就是说+5V的输出电流最大,而其他绕组的电流均次于它,即使你改好了输出电压,你的电源也顶多输出原来功率的一半甚至不到一半,一般PC电源上的+12V输出电流在6-10A之间,一些垃圾国产电源里的变压器自身功率都达不到150W外壳上却标着300W,象一般上点档次的PC电源它的开关变压器都采用EC35-EC40的变压器,输出300-400W是没有问题的。再下来一档的用EI35,250-300W还勉强过得去,最垃圾的电源竟然用EI28!外壳上却标着300W!我看能持续输出100W也算高的了。而且通常好的电源(300W)里面+5V的绕组都是用铜皮饶的,它的电流最大时可以上升至40-50A占电源总功率的66。7%-83%(其他绕组轻载),而现在的一些偷工减料的电源+5V绕组用漆包线饶不说,只用2-3根直径0。6-0。8mm的来绕。电流输出大小可想而知,+12V只用一根直径0。8的线作绕组,却标注输出电流有6-8A,而且它的整流管只有两个FR302!两个并联也只有6A,何况每次开关只有一个二极管导通,这种电源你改了也白改。所以在你准备改电源之前先挑一个有潜力可挖的,不要找个便宜的到处是病的电源下手,要不然麻烦接踵而至,还有如果你有能力的话,最好在改好电源外围反馈回路后,再把电源变压器也改了,TL494CN的开关变压器的绕组参数基本上这样的:初级:直径0。8mm/42T(最里面21T,最外面21T)。次级:直径0。65-0。8mm多根并绕双组(+5V=2X3T +12V=2X7T 依次类推 ) 好样的,顶! 转帖。原文地址:/article/2006-12/20061226155537。htm ATX电源的保护电路 日期:2006年12月26日15:55 出处/作者:电脑医院 发布商家:文三街在线 电源作为电脑的心脏,其品质不可小视,而电路中的保护功能尤其重要。一个不安全的电源不但不能保证电脑的稳定工作,出起事故来更有“株连九族”之特效,小编就遇到过电源冒烟,让主板、显卡、SCSI卡、网卡一同陪葬的惨事-(。 ATX电源的电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。为了达到相应的安全要求,在ATX电源中设置了大量的保护电路,一旦电源中有元器件出现故障或输出电压异常或负载过重时,能够进入保护状态,防止故障范围扩大对主机造成更大的损失。但是,当保护电路自身有了问题,则无疑会加深故障的复杂性。了解了ATX电源中的保护电路,对消除采购时的盲目性,帮助在使用中及时处理ATX电源出现的故障,更好地维护电脑,无疑有着积极的作用。 保险丝是电子电路中最基本的保护元件,在ATX电源中,保险丝接在输入电路的前端,一般安装在电路板上的插座内,以方便替换。它的作用就是在输入电流超过了保险丝的额定电流时,保险丝及时熔断,切断交流电源,防止故障进一步扩大。 电路中出现过电流的原因不同,导致保险丝损坏的状况也不一样。当保险丝出现玻壳爆裂、发黑、发亮等现象时,说明电源中有元件严重短路,产生的大电流导致保险丝在瞬间烧毁,由于在短时间内产生了大量的热,使保险丝在瞬间高温气化,气化的铅在玻壳上形成了一层发黑、发亮的镀层,严重时会使玻壳爆裂;若保险丝只是在一端熔断,说明保险丝遭受了瞬间大电流脉冲冲击,电路中不一定有元件损坏,也可能是外界电压突然升高,导致输入电流增大所致;若保险丝在中间部位出现断裂现象,说明电路中有过持续一个阶段的大电流,一般是电路中有元件损坏导致输入电流变大所致。 为了承受开机时较大的冲击电流,ATX电源中的保险丝的熔断电流多选在5A(5A/220V)左右,而实际上,除了开机时冲击电流较大外,电源实际工作时的最大电流不超过2A。因此最好采用延迟式保险丝,像用一般彩电上常用的23A延迟性保险丝代换,效果比采用的5A左右的普通保险丝效果要得好,参考国外原装机电路,其采用的也是这种保险丝。延迟性保险丝其玻管内的保险丝大多是螺旋形的,和普通保险丝不同。 在电源的输入电路中,整流电路后的高压滤波电容的容量较大(330F/200V,有的电源中采用470F/250V),由于开机时要对滤波电容进行充电,会形成很大的冲击电流,常对保险丝和整流部件造成损坏。为避免这种故障的发生,在电源输入电路中一般接有限流电阻。限流电阻为负温度系数热敏电阻,在正常温度下其阻值较大,限制开机接通电源瞬间产生的强大冲击电流,当开机大电流通过时,电阻变热,其阻值迅速减小,保证电源在正常工作时,消耗在其本身上的功率最小,从而降低了电源的损耗,提高了效率。 当限流电阻的引脚接触不良或因电流过大烧毁时,ATX电源将处于断路状态,通电后机器将没有任何反应,有人以为电源已烧毁,其实用万用表测试一下即知是限流电阻断路,将其更换即可。 应注意的是,许多ATX电源中省略了限流电阻,在电路板上设计有此元件的位置,但被用短路线短路掉了。有条件的话,应加上这个电阻,以保证电源的安全。当该热敏电阻损坏时,要选用冷态电阻为6/3W左右的负温度系数的热敏电阻,若实在找不到,可用6/3W的普通水泥电阻代用,只是功耗大了些。 ATX电源同普通的AT电源不同。AT电源有电源开关,当断开电源开关后,也同时断开了主机同外界电网的联系。而ATX电源因为具有远程控制、网络唤醒功能,没有单纯的电源开关,只有主机面板上的电源触发开关,关机后,只是电源的推挽开关电路停止工作,电源的整流滤波电路、辅助开关电源、控制电路等仍处于工作状态。作为家用电脑来说,目前很少有家庭使用网络唤醒功能,由于使用上的习惯,用户在关机后也很少有人想到要拨下电源插头,造成的后果是ATX电源由于电源没有全关断,其内部仍有部分电路在工作。这样做浪费了能源不说,还会带来危险。由于电压不稳,部分地区的电压在夜间用电低谷期高达260V以上,可能会对电源造成致命的伤害;另外,由于雷击或其它设备的影响还会导致电路中出现过压脉冲,也会对电源造成损害,因此有必要在电路中加上可靠的过电压保护电路。 长城电源中的过电压保护电路小板,其采用的过电压元件为压敏电阻。压敏电阻是在某一特定的电压范围内其电导随电压的增加而急剧增大的一种敏感元件,一般跨接在输入电路的两端。当有从电源线窜入或由机内自感电势的反窜等引入的过电压,作用到压敏电阻的两端时,压敏电阻立即导通而以电流的形式迅速将过电压泄放掉,从而保护了电源中相关部件不被过电压击毁。如果属外界电源电压过高,或过电压持续的时间过长,流过的电流超过了压敏电阻的承受范围时,会使压敏电阻烧毁,严重时会将压敏电阻烧成一团黑炭,并影响到电路板的绝缘,电路中产生的大电流一般会使保险丝熔断。因此,维修因过电压损坏的电源时,除了替换烧毁的保险丝外,还要仔细清理掉已烧毁的压敏电阻,并用同型号的压敏电阻替换。 许多电源中没有加装过电压保护电路,一旦有过电压冲击,电源将会严重烧毁,但加装该电路难度偏大,大家最好还是在购买电源时尽量选购带类似图1电路的产品。 为了保证电源的推挽开关电路出现大电流时,电路能够自保,在电源的初级还设置了过流保护电路。过流保护电路是由电流互感器完成过流检测的,感应出的电压经二极管整流、电容滤波,送至TL494的16脚。当电压大到一定程度,超过了保护比较器的阀值时,会使TL494内部的控制放大器翻转,使电源停止工作,以保护微机和电源本身的安全,同时,电源内部会产生“嗒”、 “嗒”的声响。当电源初级出现大电流或负载出现过电流反映到电源初级导致初级电流增加时,都会导致保护电路动作。 根据保护电路中设置的参数,我们也应认识到,过流保护电路的作用是有限的,当输出电压出现异常、输出电流大增,但反馈到电路初级的电流不足以使保护电路动作时,过流保护电路将起不到应有的作用,异常的输出电压仍会对主机造成损伤。目前,许多ATX电源中已取消了过流保护电路。 在ATX电源中,辅助电源是一个独立的开关电源,只要ATX电源一上电,辅助电源便开始工作,输出的两路电压,一路给脉宽调制电路、PS-ON控制电路、保护电路作工作电压;另一路经稳压集成电路稳压,输出的+5V电压作为+5VSB连接到主板上,作为主板上的“电源监控部件”的工作电压,使操作系统可以直接对电源进行管理,网络、键盘开机等功能也得以实现。 一旦辅助电源输出的电压出现异常,电压过低倒罢了,一旦电压过高,会直接对相关电路造成损害,故在电源中设置了辅助电源输出过电压保护电路。当辅助电源的输出过高时,信号送到保护电路,使保护电路启动,振荡电路停止工作,使电源停止输出电压。 为了保证电源输出符合标准的各路电压,保证主机中各元件的安全,电源中设置了各路电压的保护电路,依次为:12V和-5V输出电压短路或欠压保护、过压保护,+5V空载或轻载保护、过压保护等。当输出电压出现异常时,会使电源停止工作。 如果保护电路失效,则失去对整个电路的监控,输出电压一旦有异常,电源将不能马上截止,异常的电压将会对主机电路造成损害。如果保护电路出现故障。 一旦过、欠压保护电路出现故障,电源会无缘无故地处于保护状态,各路电压全部没有输出,仔细观察,会发现在接通电源的瞬间,风扇会动一下,然后就此停下来不动,这是电源处于保护状态的典型现象 原文地址:/Article/Class13
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流公司实习合同范本
- 门店物品转让合同范本
- 机械租领合同范本
- 建房出租合同范本
- 美陈设计合同范本
- 工业车辆销售合同范本
- 后勤工作思路怎么写2025(5篇)
- 生态保护修复资金申请关键因素评估报告(2025版)
- 2025年高中字音字形题目及答案
- 古筝演奏题目及答案
- JJF 2216-2025电磁流量计在线校准规范
- 开通港股通的试题及答案
- 诺姆四达人才测评题库
- 广东省历年中考作文题(2000-2023)
- 传统乐器琵琶课件
- 供应链经理上半年工作总结
- 产品功能与使用说明手册
- 开学防自然灾害 反毒品安全主题班会 课件
- 整体施工劳务服务方案
- DBJT13-119-2010 福建省住宅工程质量分户验收规程
- 北师大版七年级数学上册丰富的图形世界《从立体图形到平面图形》第二课时示范公开课教学课件
评论
0/150
提交评论