自动化专业英语翻译.doc_第1页
自动化专业英语翻译.doc_第2页
自动化专业英语翻译.doc_第3页
自动化专业英语翻译.doc_第4页
自动化专业英语翻译.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Fundamentals of computer and networks计算机是一种能接收、存储和处理数据,并能产生输出结果的快速、精确的符号加工系统,这一系统是在存储指令程序控制下工作的。本文说明为什么计算机是一个系统以及计算机是如何组成的。系统的主要部件包括输入设备、处理机和输出设备。现在详细介绍每一部件。输入设备计算机系统使用多种输入设备。其中有些输入设备直接进行人机通信,另一些则首先要求把数据记录在诸如磁性材料那样的输入介质上。常用的是读取以磁化方式记录在专门涂敷的塑料带或软盘上的数据的输入设备。直接输入设备有与计算机的工作站直接连接或在线连接的键盘,以及鼠标器、输入器、触摸式屏幕和话筒等。不论使用哪种设备,所有这些都是人与计算机系统之间的解释和通信的部件。中央处理机中央处理机(CPU)是计算机系统的核心。一台典型计算机的CPU由三部分组成:主存储器部分、算术逻辑部分和控制部分。不仅个人计算机如此,各种规模的计算机的CPU都有这三部分。输出设备与输入设备类似,输出设备也是人与计算机系统之间的解释和通信的设备。输出设备从CPU中取出机器代码形式的结果,然后将其转换成(a)人们可读的形式(例如打印或显示报告)或(b)另一处理周期的机器输入。在个人计算机系统中,常用的输出设备是显示屏和台式打印机。比较大型的计算机系统通常要配备更大、更快的打印机,多台在线工作站和磁带机。有时也将输入/输出设备和辅助存储器称为外围设备,这是因为这些设备不属于CPU,但又位于CPU附近。此外,一个计算机系统也包括总线,ROM(只读存储器),RAM(随即存储器),并行接口和串行接口,硬盘,和光驱等等。操作系统操作系统朝着两个主要目标已发展了三十多年。第一,为程序的开发和执行提供了一个方便的环境。第二,操作系统试图通过对计算任务的调度以确保计算系统的良好性能。操作系统必须确保计算机系统的正确操作。为避免用户程序影响系统的正常操作,对硬件进行修改以建立两种方式:用户方式和监控方式。各种指令(如I/O指令,HALT指令)被赋予特权,只能在监控方式中执行。监控程序存放在内存,同样业应避免用户对其修改。另外采用一个时钟避免无限循环。这样,一旦基本的计算机系统发生了变动(两种方式,特权指令,存储器保护,时钟中断),仍有可能写出正确的操作系统。正如我们前面所说,操作系统对于生产它们的厂家及其运行的硬件环境通常是唯一的。一般,安装一台新计算机的同时购买了与该硬件相应的操作系统。用户需要有效地支持其处理任务的可靠操作软件。尽管各厂家的操作软件各不相同,但都具有类似的性能。现代硬件系统,由于其复杂性,需要有操作系统来满足某些特定的标准。例如,考虑到该领域的现状,操作系统应支持某种形式的联机处理。通常,与操作软件相关的功能有: 作业管理; 资源管理; I/O操作控制; 错误恢复; 存储器管理计算机网络分布式计算机系统间需要进行通信有许多原因,例如在一个国家内,处于各地的计算机使用公共通信设施交换电子信息(邮件),从一个计算机向另一个计算机传送文件。 同样,在一个局部区域内,例如在一个大楼或机关内,分布式的计算机工作站间使用局部通信网络访问昂贵的共享资源,例如打印机、复印机、磁盘和磁带等,这些设备也由计算机管理。很明显,随着基于计算机的产品和相应的公共和局部通信网络的激增,计算机计算机通信也将得到迅速的发展,最终将在分布式系统中占统治地位。虽然相互通信的计算机间的实际距离因应用类型不同有很大变化,但一般来讲,任何一个计算机通信网络的核心数据通信设备,这些设备可以是PSDN,专用LAN或很多这种网络的互联系统。但是如果不考虑数据通信设备的类型,那么为处理相应的与网络有关的协议,需在联网的计算机上配备很多硬件和软件。一般来讲这些都与跨网通信信道的建立,与通过该信道的信息流控制有关。提供这种设备仅是网络要求的一部分,但是在很多应用中,通信的计算机类型可以不同。这表面它们可以使用不同的编程语言,而更重要的是可以使用不同的操作系统,因而用户应用程序(通常叫做应用处理程序或AP)与基本通信服务程序之间的接口也不同。例如,一台计算机可能是小型单用户机,而另一台可能是大型多用户系统。The Application of Computer在发达国家,计算机的使用几乎遍及备行各业。这里列举计算机应用的一些例子:1.科学计算。最早的计算机就是为作科学计算而创造出来的,计算涉及复杂的高难的数学或消耗时间的、令人厌烦的、重复性的数值计算。例如,计算炮弹的轨迹要求在几秒钟内解一组微分方程,设计一座大坝涉及解包含数百个变量的联立代数方程组可能要耗费数学家几年的时间,但计算机程序可以在几小时内完成此计算。2.数据处理。计算机已被广泛地用于数据处理,例如,会计,统计,人口调查。涉及的计算非常简单加,减,乘和除,但数据量极大,超出人类的能力和耐心的限度。数据库产品如Lotus-1,2,3给使用者提供正式的数据结构,用来对数据作分类,归类,贮存,选取,检索。安装了数据库软件,计算机就能处理数据,令使用者满意。3.自动控制。以前,只有那些有专门技能和知识的人才可以做的事,例如,控制生产过程,操纵机器,检验产品质量,管理生产计划,管理库存,等等,现在都可由计算机来接管,全都实现自动化,效率和精度都高。NC(数字控制)系统,PID控制系统,伺服控制系统,群控控制系统,最优控制和自适应控制系统中,计算机作为中央控制单元把自动控制过程涉及的一切计算都接管过去,而且为系统中的所有的其他工作单元规定时刻表。CIMS(计算机集成制造系统)不仅包含生产控制系统,还有生产计划和管理系统,旨在把工厂自动化(FA)与办公室自动化(OA)结合起来,构成全家公司的计算机网络。HIMS(人集成制造系统)是计算机控制的一种高层形式。虚拟现实技术通过使用高性能计算机以及特殊的软件来为操作员创立一个虚拟的空间。4.计算机仿真。计算机仿真是广泛地用于科研和工程设计的强有力的分析工具,表现出无与伦比的优点。有了计算机仿真,科学家和工程师们在观察未知现象,分析复杂过程,设计机器或建筑物时就不需建造真实的硬件模型了。当被研究对象很昂贵,或者不可能把它建造成模型时,那么,计算机仿真就特别重要了。事实上,计算机仿真是建立在反映被研究或被考察对象的实质的数学模型的基础之上的。数学模型包含一系列用数学的思维和方法描述该对象的内在过程的方程式。每一计算机仿真程序都包括从这些方程式推导出来的算法。已开发出许多计算机仿真系统,已证明它们在成本-效果上是合算的。因为采用了计算机仿真程序,工程师们每次输入不同的方案和参数到他们的计算机模型中即可完成重复性的设计过程而不必建造许多的、不同的真实模型。5.机器人学。在机器人中的控制器大多数是计算机-从微型计算机到小型计算机。NC(数值控制)和SC(伺服控制)用得很广泛。它们可重复编程以产生机器人根据该程序将要采取的运动和行动所需的指令序列。举例来说,控制器把一系列脉冲发送到机器人臂的一个关节内的步进电机,正如那程序所要求的那样使它旋转一角度。当所有的关节都以这种方式驱动时,机器人臂将伸到预期的位置,具有预期的姿态,装在臂端的终端执行机构就按照控制器的指示做它的工作。运动的精度决定于控制器本身。6.CAD和CAM。CAD(计算机辅助设计)是一种软件,能帮助工程师们设计新产品、建筑物、印刷电路板、土木工程如桥梁、机场,把他们从令人厌烦的、劳累的和消耗时间的工作中解放出来,如画图(草图和工程图)。当工程师们从事设计时,他们常常参阅各种手册,其中列出了有关结构、零件、材料和辅助材料的细节,供设计者为他们的设计而选择。CAD产品把所有这些手册的内容归入到软件产品的库中,为工程师们提供信息,如产品名称、尺寸、功能、性能、规格、形状、颜色、制造厂家、机器、零伴、组件、工具、材料等等和价格,都是工程设计所必需的。CAM(计算机辅助制造)是帮助工程师们分析一种产品或一项工程并对制造或建造它提出建议的软件。要按照软件的要求输入表示它的形状、大小、结构、装配、制造它所用的原材料等的数据、图、表等。然后,该软件就会给出有关它的制造的建议,例如,机器加工过程,要使用的机床和设备,技术参数如完成限期,精度以及特殊的处理等。7.管理。管理是一切银行、公司、商店、大学、研究机关在竞争中成功还是失败的决定性因素之一。管理是综合性技术,涉及该单位的每一方面任务(产品、发明、创造、专利)、人员(管理人员、职员、技术人员、服务人员),财政、不动产、设备,等等。计算机化的管理是指在任何专业中提供管理手段的软件,例如,对各种人员,会计,销售,仓库,税收,工资等的管理。每一种软件都体现了该软件所涉及的专业的最新理论和方法,而且相当容易就能学会。越来越多的管理软件出现了,取代了人的管理。 8.计算机化的通讯。在这一领域的进步始于60年代初,那时的问题是把偏僻地区的计算机终端联入中央计算机。这一问题的解决办法是以异步的、低速的线为基础,或者按星形拓朴结构组织用专线联络每一台终端机,或者以树形拓朴结构用多端线,联结多台终端机。到了60年代末,由于出现分布式资源共享网络,这一领域向前迈进一大步。目的是把地理上分布各处的计算机和用户互联起来,使联结到网络中的全部用户都可共享在这些地点开发出来的硬件和软件资源。这类网络的最显著的一个例子就是ARPANET,它是在1969年开始实施的一个网络。一个以无线电为基础的终端访同网络称为ALOHA,是在1970年在夏威夷大学建造的。INTERNET上的卫星转发器装备了一具复盖全球的天线,能利用地面站传输数据,因而达到在地面站间的全联接。用光纤缆把偏远地区的用户终端联接到中央计算机设施,可传输数据、图形、电视和音频信号,比现存的任何网络都更好。9.先进的应用。人工智能是计算机科学的一个分支。它的目的是开发用于创造“智能,计算机程序的理论和方法;它们的工作方式象人,而不是要把使用计算机的人类屈从计算机支配的、死板的工作方式。在类比的意义上,人类的智能被加到计算机程序上,它们就显示出更聪明的行为和更广泛的能力,例如,思维和推理,获取知识并把知识用于解决今天的计算机不能解决的、更复杂和更困难的问题。专家系统是人工智能最成功的例子。面向一种专业的专家系统就象该专业领域的人类专家那样工作,对用户提出的问题提供建议。(从人类专家)抽取来的专业知识被组织在它的知识库中,准备好让使用者检索。现在,许多专家系统已可从市场购得,更多的专家系统正在开发中。知识工程是人工智能的另一课题。知识工程是为了研究怎样用程序模仿人类的的头脑,特别是,模拟人脑获取知识和应用知识的能力。换句话说,知识工程是要创造出能够学习,也就是靠它自己能扩大其知识贮存量的计算机。计算机视觉是人工智能的另一种应用。计算机视觉就是使用计算机去分析和评价视觉信息;换句话说,计算机能够看见东西。计算机视觉系统能从,譬如说,照片、图画、影物等等的视觉信息中辨认或分辨那些在计算机程序中已确定地分类的物体,这种系统可以比人类的眼睛更有效地工作。例如,检查空中摄影图片以辨认特定的物体,例如,导弹、轰炸机、战舰,可以帮助战场上的总司令作出决定。教育可能是人工智能的另一种应用。与传统的CBT(计算机辅助训练)不同,人工智能的CBT能根据学生的知识、经验、强点与弱点调整教学。结果,人工智能的CBT比常规的CBT有效得多。Intelligent RobotsUnit 4 Computer structure and function这一节介绍计算机的内部体系结构,描述了指令如何存储和译码,并解释了指令执行周期怎样分解成不同的部分。从最基本的水平来讲,计算机简单执行存储在存储器中的二进制编码指令。这些指令按照二进制编码数据来产生二进制编码结果。对于通用可编程计算机,四个必要部件是存储器、中央处理单元(CPU,或简称处理器),外部处理器总线,输入/输出系统。存储器储存指令和数据。CPU读取和解释指令,读每条指令所需的数据,执行指令所需的操作,将结果存回存储器。CPU所需的操作之一是从外部设备读取或写入数据。这利用输入/输出系统来实现。外部处理器总线是一套能在其他计算机部件之间传送数据、地址和控制信息的电导线。 存储器计算机的存储器是由一套连续编号的单元所组成。每个存储单元是一个能存二进制信息的寄存器。单元的编号称为地址。初始地址为0。制造商定义处理器的一个字长为单元的整数长。在每个字中,各位表示数据或指令。对于英特尔8086/87和摩托罗拉MC68000微处理器来说,一个字是16位长,但每个存储单元仅为8位,因此两个8位单元来存取获得一个数据字长。为了使用存储器中的内容,处理器必须取来右边的内容。为了完成这一次读取,处理器把所需单元的二进制编码地址放到外部处理器地址总线的地址线上,然后,存储器允许处理器读取所寻址的存储单元的内容。读取存储单元的内容的这一过程并不改变该单元的内容。存储器中的指令存储器中的指令由CPU取来。除非发生程序转移,它们按在存储器中出现的顺序来执行。用二进制形式所写的指令叫做机器语言指令。一种得到(指令)有效形式的方法是将(这些)位分成段,如图3-4A-2所示。每一段都包含一个不同类型信息的代码。在简单的计算机中,每条指令可分为四段,每段有四位。每条指令包括操作代码(或操作码,每条指令有唯一的操作码)、操作数地址、立即数、转换地址。在一个实际的指令集中,有很多指令。也有大量的存储单元来存储指令和数据。为了增加存储单元的数目,如果我们使用同样的方法,地址段的指令一定长于16位。除了增加指令长度外,还有很多增加微处理器寻址范围的方法:可变指令段、多字指令、多寻址模式,可变指令长度。我们不将详细讨论它们。存储数据 数据是存储器中代表代码的信息。为了有效利用存储空间和处理时间,大多数计算机提供了不同长度和表示方法的处理数据能力。能被处理器识别的各种不同表示称作数据类型。常用的数据类型有:位、二进制码、十进制数字(4位字节,BCD)、字节(8位)、字(2个字节)、双字(4个字节)。 有一些处理器提供了可处理其他数据类型。例如单精度浮点数据类(32位)和双精度浮点数据(64位)等的指令。还有另一类的数据特征数据。通常也表示为8位。在标准键盘上,每个计算机终端键和键的组合(例如shift和control功能键)有定为美国信息交换标准码的7位码。存储器类型在数字控制系统的应用中,我们也关注不同存储技术的特征。对主存储器来说,我们需用它临时存储信息,并逐次地从不同单元写入或获得信息。这种类型的存储器称作随机访问存储器(RAM)。在某些情况下,我们不想让存储器中的信息丢失。因此我们愿使用特殊技术写入存储器。如果写入只在物理改变连接时才能实现,那么这种存储器称为只读存储器(ROM)。如果相互连接的模式可由程序设定,那存储器叫做可编程只读存储器(PROM)。如果需要实现改写的情况,我们有可擦的可编程只读存储器(EPROM)。电可擦除的PROM缩写为EEPROM。中央处理单元CPUCPU的工作是从存储器中取回指令并执行。CPU的结构如图3-4A-3。它有四个主要部件:算术逻辑单元,一系列存储器,一个内部处理器总线和控制器。CPU的这些及其其他部件和它们在指令周期的分享将在后面的章节中说明。算术逻辑单元(ALU)ALU提供很广泛的算术操作,包括加、减、乘、除。它也完成布尔逻辑操作,例如:与、或、二进制算术求补。其他操作,例如字比较也可达到。计算机任务的主要部分包括ALU,但为了利用ALU指令,需要大量的数据移动。寄存器CPU内的一系列寄存器是用于存储信息的。指令寄存器当一条指令取回来,它被复制到指令寄存器内,并被译码。译码意味着检查操作代码并用于确定执行顺序的各步CPU的编程器模型 可由编程器检查或修改的寄存器集称为CPU的编程器模型。由指令集操作或明显受硬件输入或数据操作的结果影响的一类寄存器是模型中表示的寄存器。标志寄存器执行顺序不仅由指令而且也由前面指令的结果来确定。例如,如果在ALU中进行加法运算,加法的结果(不论结果是正、负或0)存储在称为标志寄存器、状态寄存器或条件寄存器中。如果下一指令是一个条件转移指令,标志字需要检验以确定是否需要转移。程序计数器(指令指针)下一指令的地址位于称作程序计数器的寄存器中。数据寄存器当一指令用寄存器存储数据,指令中的寄存器参考被称作寄存器寻址。利用内部寄存器存数据的原因在于它们能使指令更短,执行速度更快。地址寄存器内部寄存器也可用于储存存储器数据的地址。这种情况下,指令字包含寄存器数(例如一个寄存器地址)。寄存器中包含用于指令中的存储器数据的地址。这种寻址方式叫做寄存器直接寻址。寄存器的内容指向存储器中的数据。 内部处理器总线内部处理器总线使数据在内部存储器间移动。总线是一套分组的电导线,它能在CPU的功能块间传送数据、地址和控制信息。当两个寄存器连到总线上时,源寄存器中的数据可传到目的寄存器中。控制器控制器提供了程序周期内取自寄存器每条指令的控制信号的适宜顺序。一个总程序周期是由许多指令周期组成,每个指令周期可分为它部件的机器周期,每个机器周期由许多时钟周期组成。例如图3-1A-4,为了取回一条指令,程序计数器中的地址放到在时钟周期C1上升沿的外部总线的地址线上。同时,利用控制线上的一个代码,CPU通知所有连接到总线上的设备,即CPU正执行一个“操作码取回”的机器周期。存储器允许存储器寻址去选择包含指令的存储器单元。在C2段,控制器将“读”命令放到控制总线上,允许存储器数据放到数据线上。 然后在C3段,控制器将数据选通到指令寄存器中,并从控制总线再移动读命令。在C4段,控制器在地址总线上再移地址并开始译指令的操作代码部分,来看一看执行需要说明步骤。译码操作或许会在“操作码取回”机器周期的末端花费几个更多的时钟周期。外部提示请求 停止正常的指令处理顺序往往是必要的。一种外部提示请求是复位请求。在不可恢复故障的情况下,计算机系统可要求自身复位。这带来的影响是初始化系统中所有重要寄存器,并从标志存储单元通常是0单元开始执行指令。在正常事件过程中更通常的启动服务是中断请求。来自外部设备的一个中断请求信号可使CPU立即执行实施必要动作的服务子程序。当完成服务子程序后,处理器将从最初被中断的地方继续执行。第三种类型的输入是总线请求,或直接存储器寻址请求。有一个终端接口来存储正文的所有特征,直到接到一个“回车”。然后,接口请求使用系统总线,此时,数据以尽可快的速度被传递给存储器。这种方式下,处理器仅变为停止,直到传递完成。总线总线是计算机系统最重要的通信系统。在CPU控制下,一个数据源设备和一个数据目的设备被允许在短时传输下连接到总线上。外部处理器总线内部处理器总线通过位于微处理器集成电路上的一组总线缓冲区连接到外部处理器总线上。系统总线 微计算机板能够通过一个连接器与外部系统总线相联而能与其他板进行通信。计算机输入和输出CPU外部的一组寄存器是与输入/输出系统有关的。I/O系统在接口处利用控制、地址、数据线通过I/O寄存器来与外部处理器总线连接。有两种方法用于寻址I/O寄存器。第一种方法,称为I/O映射的输入/输出,操作码本身有专门的I/O指令,寻址在接口中称为I/O口的标号寄存器。第二种寻址I/O寄存器的方法给出了位于CPU寻址寄存器范围内的I/O口地址。这叫做存储器映射的I/O。当然,没有任何存储器单元在同一寻址下作I/O单元。存储器映射方法的益处之一是存储器寻址方式的全部范围可用于I/O寄存器寻址。Fundamentals of single-chip microcomputers单片机是本世纪两大引起争论的重大发明创新即数字计算机与集成电路发展的顶点。单片机有这样两种结构类型。一些使用了哈佛结构的分离的程 序/数据存储器,另一些被通用计算机和微处理器广泛采用的是普林斯顿结构,遵循在程序存储器与数据存储器之间没有逻辑区别的原理。概括地讲,单片机的特征是将计算机的所有部件都合并到一个单一的装置上。只读存储器(ROM): ROM通常用于永久的、不易变的应用程序的存储。许多微计算机和微控制器要有大量应用场合,因此这些设备的生产要求在制造过程中,程序存储器中的内容要保证长久不变。显然,由于在生产后不能产生变化,因此这意味着要有一个ROM代码开发的严格的方法。这一开发过程不仅包括利用其硬件仿真能力的复杂开发系统的仿真,还包括强大的软件工具的应用。一些生产商提供了包括带用户可编程存储器范围内设备的附加ROM可选项。其中最简单的设备是在微处理器模式下运算,把一些输入/输出线用作地址和数据总线来访问外部存储器。虽然带有限定I/O和改进的外部电路,但这种类型的设备能够像单片机派生的功能那样工作。这些无ROM设备的应用在生产电路中通常是偶数,其容量不能调整、定制的单片ROM的开发成本;但与传统的基于电路的微处理器相比,在I/O和其他芯片上仍有很大的节省。 ROM设备的更精确的替代可通过不同形式的带有背页式EPROM(可擦写编程ROM)插座或由EPROM取代ROM的设备而获得。这些设备本质上比相等的ROM设备要昂贵,但确实提供了完全等效的电路。带EPROM的设备时少量的应用场合具很大诱惑,它们可提供单片设备的优点,单片I/O,等等,以及灵活的用户编程的方便性。读/写存储器(RAM):RAM是用于程序执行过程中对对工作变量和数据的存储。存储器的大小随设备的类型而变,但它与处理器有相同的特征宽度(4,8,16位等)。特殊功能寄存器,例如栈指针或定时寄存器通常合并到RAM区。在哈佛类型的微计算机中,RAM和寄存器常常没有实际分离,因此在一个微处理器系统情况下,没有必要把RAM和处理器寄存器区分开。中央处理单元(CPU):CPU更象任何一种微处理器。微计算机和微控制器的许多应用包括BCD码的处理(例如,数据显示),因此,普遍发现CPU能很好地处理这一类型的数据。由于许多控制器的应用包括开或关单个输出线或读取单个线,因此对测试、设定和复位存储器或I/O的独立的位,它们通常也是很好的设备。这些线很容易与双套设备来接口,例如:开关,恒温器,固态继电器,阀,电动机,等等。串行输入/输出:串行输入和输出在不同的微处理器中策略有一些改变;大多数设备提供允许用户选择哪些针脚是输入端哪些是输出端。并行输入/输出:具有终端设备的串行通信通用的方法是用少量的线进行连接。这种通信业可开发用于连接特殊功能的芯片或将几个微计算机连在一起。公用异步和同步通信系统要求协议能提供成帧(开始和停止)信息。这可由硬件设施或U(S)ART(通用(同步)异步接收/发送器)来使处理器从低电平、占时、细目中解脱出来。仅需选择一个波特率和其他可能的选项(停止位的数目,奇偶检验,等等)以及装载(或读取)串行发送器(或接收器)的缓冲区。相应格式的串行化再由硬件电路来完成。定时器/计数器设备:单片机的许多应用技术要求有精确估计所经过的时间。这可经仔细评定程序每一分支的执行时间来确定,但这很快会变为全部无效,除了最简单的程序。较合人意的方法是,用定时电路来精确独立计算精确的时间增量,经过一段预定时间后,产生一个中断。这种类型的定时器通常被安排去预载所要求的计数值。然后,定时器减小这一数值,当计数器减小为0时,产生一中断或设置一个标志。较好的定时器有自动再加载初始计数值的能力。这使程序员从再加载计数器和存取定时器再启动前所经过的时间的责任中解脱出来。如果需要连续精确的定时中断,否则,这是必要的(例如,在一个时钟内)。有时与定时器相关的是事件计数器。这一设备通常有一特殊输入针,它可直接驱动计数器。定时元件:大多数微计算机的时钟电路只需要简单的定时元件。若要达到最大性能,必须用一个晶体来保证达到最大时钟频率,而不是超过。许多时钟电路也把电阻和电容用作低成本定时元件或由外部源来驱动。如果微计算机的外部需要同步的话,这后一种方案是很有用的。A process control system此部分的主要目的是满足读者对自动过程控制的需要和激励读者来学习。自动过程控制与持续过程变量、温度、压力、流量、成分和期望操作值一类的量有关。正如我们在后续的章节中所看到的,过程本身是动态的。变化不断发生,并且如果激励未加入,重要的过程变量与安全有关的变量、产品质量和生产率将不能获得期望值。为了强化概念,让我们来考虑一个过程流通过浓缩流加热的热变换器,其过程框图如图4-1A-1 此单元的目的是把一过程流从某一入口温度Ti(t)加热到某一期望出口温度T(t)。如前所述,热介质是浓缩流。只要对周围环境没有热损失,过程流所获得的能量等同于浓缩流释放的热量。也就是说,热变换器和管子均绝缘。在这种情况下,释放的热量就是浓缩流浓缩的潜热。 在此过程中,有许多变量可变化,从而造成出口温度偏离期望值。如果发生此情况,激励必须加入以更正此偏差。也就是说,激励将控制出口温度以维持其期望值。完成此目的的一种方法是首先测量温度T(t),然后与期望值比较,基于此比较值,确定以什么来更正偏差。浓缩流的流量可用于更正偏差。也就是说,如果温度高于期望值,那么到热变换器的浓缩流的流量(能量)可调节减少。如果温度低于期望值,那么到热变换器的浓缩流的流量(能量)可调节增加。所有这些均可由操作者人工完成,并且如果过程简单明了,这将不成问题。然而,在大多数过程控制工厂中,均有数百个变量必须保持期望值,那么更正过程将需要大量的操作人员。因此,我们希望自动的完成此控制。这就是说,我们需要一些不用操作人员介入就可控制这些变量的设备。这就是我们所说的自动过程控制。 为完成此目的,必须设计和实现控制系统。一种可能的控制系统和其基本元件如图5-1A-2所示。 首先是测量过程流的出口温度,完成此任务的是传感器(热电偶、阻抗温度仪、*系统温度计、电热调节器等)。传感器会与热敏电偶相连,热敏电偶从传感器采一输出点,并把其转换为足够强的信号传递给一控制器。控制器接受与温度相关的信号,并与期望值相比较。依赖于此比较值,控制器可确定怎样保持温度在期望值。基于此决定,控制器给终端控制元件传送另一信号,其反过来操作流量。 前面的段落介绍了控制系统的四个基本元件。它们是: 传感器,通常称为主要元件。 热敏电偶,通常称为次要元件。 控制器,控制系统的“脑”。 终端控制系统,经常为控制阀但不总是。一般其它终端控制元件为可变的 速度泵、传送机和电动机。这些元件的重要性在于它们执行的是在每一个控制系统中所必须的三个基本操作。这些操作是: 测量(M ):传感器和热偶电阻的组合元件经常测量被控变量。 设定(D ):基于测量值,控制器决定怎样维持变量在期望值。 执行(A ):作为控制器决定后的结果,系统必须采取一定的措施,通常有终端控制元件完成。如上所述,在每一个控制系统中这三个基本操作:M、D和A都会存在。在某些系统中,决定-执行操作相当简单,而在另一些系统中操作很复杂。工程人员设计控制系统时必须确保采取的措施要影响控制变量,也就是说,采取的措施要影响测量值。否则,系统是不可控的且有可能弊大于利。Sensors and Transmitters在第一单元中,我们了解了控制系统的四个基本元件是传感器、变送器、控制器和终端控制元件。我们也知道了这些元件执行每一个控制系统的三个基本操作:测量(M)、设定(D)和执行(A)。本部分随着控制器较详细的研究,简单介绍一下传感器和变送器。传感器和变送器执行的是控制系统的测量(M)操作。传感器产生一个机械的或与测量的过程变量相关的类似的现象。反过来,变送器把这一现象转换为可以传递的信号。因此,信号与过程变量相关。存在与传感器/变送器组合元件相关的三个重要术语。通过测量的过程变量的高低数值来设定仪表的范围。也就是说,可以考虑使用标有刻度的压力传感器/变送器来测量20表压到50表压间的过程压力。我们可以说,传感器/变送器组合元件的范围是2050表压,仪表的测量范围与高低压数值间的范围是不同的。上述的压力仪表测量范围是30表压。总之,我们必须明确高低数值来限定仪表的范围,也就是说,两个数值必须给出,仪表的测量范围与两个数值间的范围是不同的。最后确定,低压数值作为仪表的零点。仪表的零点并不一定就是零,上述例子中,仪表的零点是20表压。 其他工业传感器有:压力、流量、温度和水平面。有时候,获得描述传感器/热敏电阻动态性能的参数对于系统分析是很重要的。一旦得知测量间隔,增益即可容易获得。考虑一个范围为0-200表压得电子压力传感器/变送器,增益被定义为输入变化量除以输出变化量或激励函数变化量除以响应变化量。在这种情况下,输出是电子信号(420毫安),输入是过程压力(0200表压),因此考虑的另一个例子是范围在100300F的气动温度传感器/热敏电阻。增益为也就是说,传感器/变送器的增益是输出测量范围与输入测量范围的比率。上述的两个例子表明传感器/变送器的增益是超过其完全操作范围的常量,大多数传感器/变送器都是这种情况;然而,也有一些象用于测量流的微分压力h传感器不是这种情况的例子。微分压力传感器冷处理孔处的微分压力。微分压力与测定体积流的速率F的平方有关,即 描述当测量范围为0Fmaxgpm的测定体积流时,输出信号形式为微分压力热敏电阻的公式为式中 输出信号,毫安测定体积流从等式中可知,变送器的增益获得如下:标称增益为:此表达式说明增益不是常量,而是一个时间的函数。流量越大,增益越大。明确的说,因此,实际上增益在零到两倍标称增益间变化。在流体控制系统中这就造成了非线性。目前,大多数生产厂家均提供产生潜入变送器的嵌入式开方器的微分压力热敏电阻。大多数传感器/变送器的动态响应比过程快,因此,时间常数和空载时间经常被忽略,从而传递函数有纯增益给出。然而,当考虑动态特性时,一次或二次系统的仪表传递函数通常表示为或P Controllers and PI Controllers为了维持参考点,反馈控制器做出决定的方法是通过在被控量与参考点差别的基础上,计算输出。在本单元中,我们将通过描述其操作的公式着眼于最普通的控制器。比例控制器(P)除了在这里不考虑的开-断控制器,比例控制器是最简单的控制器,描述其操作的方程式如下:或式中控制器的输出,或参考点,或 被控量,或,这是热敏电阻的信号。 误差信号,或,参考点与被控量的差别。控制器增益,或偏差值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论