




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
应用题专题知识一、和差倍问题 (一)和差问题:已知两个数的和及两个数的差,求这两个数。方法:(和差)较小数,和较小数较大数方法:(和差)较大数,和较大数较小数例如:两个数的和是15,差是5,求这两个数。方法:,.(二) 和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。 方法:和(倍数)倍数(较小数)倍数(较小数)倍数几倍数(较大数)或 和倍数(较小数)几倍数(较大数)例如:两个数的和为50,大数是小数的4倍,求这两个数。方法: (三)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数。方法:差(倍数)倍数(较小数)1倍数(较小数)倍数几倍数(较大数)或 和倍数(较小数)几倍数(较大数)例如:两个数的差为80,大数是小数的5倍,求这两个数。方法: 二、年龄问题年龄问题的三大规律:1两人的年龄差是不变的;2两人年龄的倍数关系是变化的量;3随着时间的推移,两人的年龄都是增加相等的量解答年龄问题的一般方法是:几年后年龄大小年龄差倍数差小年龄,几年前年龄小年龄大小年龄差倍数差三、植树问题(一)不封闭型(直线)植树问题1 直线两端植树: 棵数段数全长株距;全长株距(棵数);株距全长(棵数);2 直线一端植树: 全长株距棵数;棵数全长株距;株距全长棵数;3 直线两端都不植树: 棵数段数全长株距;株距全长(棵数);(二) 封闭型(圆、三角形、多边形等)植树问题棵数总距离棵距; 总距离棵数棵距; 棵距总距离棵数四、方阵问题在方阵问题中,横的排叫做行,竖的排叫做列,如果行数和列数都相等,则正好排成一个正方形,就是所谓的“方阵”。方阵的基本特点是: 方阵不论在哪一层,每边上的人(或物)数量都相同每向里一层,每边上的人数就少,每层总数就少 每边人(或物)数和每层总数的关系: 每层总数每边人(或物)数; 每边人(或物)数=每层总数 实心方阵:总人(或物)数=每边人(或物)数每边人(或物)数 五、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题还原问题又叫做逆推运算问题解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算在计算过程中采用相反的运算,逐步逆推 在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反六、盈亏问题按不同的方法分配物品时,经常发生不能均分的情况如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义一般地,一批物品分给一定数量的人,第一种分配方法有多余的物品(盈),第二种分配方法则不足(亏),当两种分配方法相差个物品时,那就有:盈数亏数人数,这是关于盈亏问题很重要的一个关系式解盈亏问题的窍门可以用下面的公式来概括:(盈亏)两次分得之差人数或单位数,(盈盈)两次分得之差人数或单位数,(亏亏)两次分得之差人数或单位数解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下“亏”,“亏”多少?找到盈亏的根源和几次盈亏结果不同的原因另外在解题后,应进行验算七、假设问题鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的重点掌握鸡兔同笼问题的解法假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔子脚数鸡兔总数-实际脚数)(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有: 兔数=(实际脚数-每只鸡脚数鸡兔总数)(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数九、工程问题工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称之为“工程问题”。1.解题关键是把“一项工程”看成一个单位,运用公式:工作效率工作时间=工作总量,表示出各个工程队(人员)或其组合在统一标准和单位下的工作效率。2.利用常见的数学思想方法,如代换法、比例法、列表法、方程法等。抛开“工作总量”,和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后利用先前的假设“把整个工程看成一个单位”,求得问题答案,一般情况下,工程问题求的是时间。有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠”,甚至会表现为“行程问题”、“经济价格问题”等等,工程问题不仅指一种题型,更是一种解题方法。十、浓度问题将糖溶于水就得到了糖水,糖水甜的程度是由糖与糖水二者重量的比值决定的糖与糖水重量的比值叫糖水的浓度,这个比值一般我们将它写成百分数其中糖叫溶质,水叫溶剂,糖水叫溶液不光是糖水中存在着浓度,我们日常生活中的盐水、酒精等溶液只能够都存在着浓度的问题浓度问题相关公式:;常用方法:抓不变量:一般情况下在经济问题中成本是不变量,浓度问题中溶剂是不变量,我们可以用画图来分析;方程法:对于经济浓度问题,采用方程来求解是简便、有效的方法;十字交叉法:(甲溶液浓度大于乙溶液浓度);形象表达: 浓度三角:浓度三角在解决浓度问题时非常有用十一、利润问题商店出售商品时,为了获得最大的利润,商家总是“低进高出”,只有这样才能赚取差价,这个差价就会产生利润实际上,在商品贸易上的许多数学问题都会涉及到三个量:成本、利润及定价成本购进商品所需的本钱,又叫进价或成本价;定价商品出售的价格,又叫售价或卖卖价;利润产品定价中高于成本以上的那一部分为了衡量获得利润的大小,通常采用:“利润百分数”或“利润率”这个量:由上面的公式还可以引申出下面两个公式:,习题汇编1. 商店进了300支钢笔,每售出1支,可获的利润当这批钢笔售出芸时,共获得利润750元,求每支钢笔的进货价.2. 商场以每个元的价格购进了一批文具盒,每个售价5元,还剩下80个没售出时,除了成本已经获利500元问这批文具盒一共有多少个?3. 有300克浓度为的盐水现在要将这盐水的浓度变为,问应加入多少克水?4.大瓶酒精溶液是小瓶酒精溶液的2倍,大瓶酒精溶液的浓度为,小瓶酒精溶液的浓度为将两瓶酒精溶液混合后,酒精溶液的浓度是多少?5.从360米长的环形跑道上的同一地点向相同方向跑步,甲每分钟跑305米,乙每分钟跑275米,两人起跑后,问第一次相遇在离起点多少米处?6.李明和王林在周长为400米的环形跑道上练习跑步,李明每分钟跑200米,是王林每分钟跑的,如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?7.叔叔比小华大20岁,明年叔叔的年龄是小华的3倍,小华今年_岁.8.今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍,儿子今年_岁。9.有甲、乙、丙三个人,当甲的年龄是乙的2倍时,丙是22岁;当乙的年龄是丙的2倍,甲是31岁;当甲60岁时,丙是_岁。10.某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣3分,小聪得了60分,他做对了_道题。11.原有男、女同学325人,新学年男生增加25人,女生减少,总人数增加16人,那么现有男同_人。12.一根木料长21米,把它据成3米长的一段,每据一段用6分钟,共用_分钟。六年级练习(易错题)1.学校食堂原有大米3.2吨,第一周用去了总数的,第二周用去了吨,还剩下多少吨?2. 与的差除它们的和,商是多少?一个数的40%比32少7,这个数是多少?3.判断; 1.60.3=51( ) 8个小正方体一定能拼成一个较大的正方体。() 100增加20%后再减少20%秘得的数与相同。()4.如果m、n都是非0的自然数,m7n,m和n的最大公因数是()。5.等底等高的圆锥体、圆柱体和长方体,圆柱体与圆锥体体积的比是();圆锥体与长方体体积的比值是()。6.比80米多是()米;12千克比15千克少()%。7.一班中女生和男生人数比是13,这次期中考试的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是()。8.投掷3次硬币,有2次正面朝上,上次反面朝上。那么,投掷第4次硬币正面直、朝上的可能性()。9.在下面的方格图中先画出和长方形面积相等的平行四边形、三角形、梯形各一个,再在长方形中画出一个最大的圆。10.汽车从学校出发到太湖玩,小时行驶了全程的,这时距太湖边还有4千米。照这样的速度,行完全程共用多少小时?11.某校六年级有120名师生去参观自然博物馆,某运输公司有两种车辆可供选择:(1)限坐40人的大客车,每人票价5元,如坐满票价可打八折;(2)限坐10的面包车,每人票价6元,如坐满票价可按75%优惠。请根据以上信息为六年级师生设计一种最省钱的租车方案,并算出总租金。12.如图,用篱笆围成一个梯形菜园,梯形一边是利用房 屋墙壁,篱笆总长75米,菜园的面积是()平方米。13.有一个等腰三角形,顶角和一个底角的度数比是21,这个三角形的三条边分别是1分米、1分米、1.42分米,这个三角形的面积是()平方厘米。14. 有一个量杯,内有600毫升水,现把3个圆锥体铁块浸入其中但水未溢出,每个圆锥的底面积是10平方厘米,高是5厘米,现在水面的刻度是()毫升。15. 如左图,已知两边分别是6厘米和10厘米,其中一条底上的高是8厘米,这个平行四边形的面积是()平方厘米。17. A23a,B2a7,已知A、B的最大公约数是6,那么a=();A和B的最小公倍数是()。18. 一项工作,小华单独做小时完成,小明小时完成。两个合做,()小时完成。19. 两个面积相等的三角形一定可以拼成一个平行四边形。( )20.A+B=20 , B+C=16 , C+A=18 , 则A + B + C =( )。21.如果=,那么a =( ), b =( )。22.选择(1)yx=0,y与x( )。A. 成正比例 B. 成反比例 C. 不成比例 D. 无法确定(2) 一个长方形的长增加20%,宽减少20%,则它的面积( )。A. 增加20% B. 不变 C. 减少20% D. 减少4%(3)从圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出差税务报销培训课件
- 2025年江西省农产品种子购销合同(示范文本)
- 2025广告代理合同范本
- 2025【标准合同】租赁合同范本
- 冲压操作员安全培训课件
- 人口伦理在技术发展与人类自由中的地位-洞察及研究
- 2025年企业管理资料范本设备采购合同
- 冰箱里的秘密课件
- 冰箱焊接安全培训课件
- 八大横的写法课件
- 2023-2025年高考生物试题分类汇编:孟德尔两大遗传定律原卷版
- 2025年村医笔试重点题库
- 2025-2026学年人音版(简谱)(2024)初中音乐七年级上册教学计划及进度表
- 养生艾灸直播课件
- 2025年徐州市中考语文试题卷(含答案及解析)
- 云南省2025年校长职级制考试题(含答案)
- 2025年中国电信福建公司春季招聘80人笔试参考题库附带答案详解
- 《幼儿园开学第一课》课件
- (2025年标准)佛教无偿捐赠协议书
- 学堂在线 足球运动与科学 章节测试答案
- 公众号合作合同范本
评论
0/150
提交评论