数系的扩充和复数的概念..ppt_第1页
数系的扩充和复数的概念..ppt_第2页
数系的扩充和复数的概念..ppt_第3页
数系的扩充和复数的概念..ppt_第4页
数系的扩充和复数的概念..ppt_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 1数系的扩充和复数的概念 毕达哥拉斯 约公元前560 480年 数 是万物的本源 支配整个自然界和人类社会 世间一切事物都可归结为数或数的比例 这是世界所以美好和谐的源泉 计数的需要 正整数 零 自然数 远古的人类 为了统计捕获的野兽和采集的野果 用手指或石子数个数 历经漫长的岁月 创造了正整数1 2 3 4 5 正整数是现实世界最基本的数量 是全部数学的发源地 古代印度人最早使用了 0 公元5世纪时 0 已经传入罗马 但罗马教皇凶残而且守旧 他不允许任何使用 0 有一位罗马学者在笔记中记载了关于使用 0 的一些好处和说明 就被教皇召去 砍去了双手 中国是世界上最早认识应用负数的国家 早在2000多年前的 九章算术 中 就有正数和负数的记载 公元3世纪 刘徽在注解 九章算术 时 明确定义了正负数 两算得失相反 要令正负以名之 不仅如此 刘徽还给出了正负数的加减法运算法则 千年之后 负数概念才经由阿拉伯传人欧洲 负数的引入 解决了在自然数集中不够减的矛盾 自然数集 整数 负整数 自然数 正整数 零 整数集 分数的出现 随着生产 生活的需要 人们发现 仅仅能表示自然数是远远不行的 如果分配猎获物时 5个人分4件东西 每个人人该得多少呢 于是分数就产生了 中国对分数的研究比欧洲早1400多年 自然数 分数和零 通称为算术数 自然数也称为正整数 分数的引入 解决了在整数集中不能整除的矛盾 整数 负整数 自然数 正整数 零 分数 有理数 有理数集 关于无理数的发现2500年古希腊的毕达哥拉斯学派认为 世间任何数都可以用整数或分数表示 并将此作为他们的一条信条 有一天 这个学派中的一个成员希伯斯突然发现边长为1的正方形的对角线是个奇怪的数 于是努力研究 终于证明出它不能用整数或分数表示 但这打破了毕达哥拉斯学派的信条 于是毕达哥拉斯命令他不许外传 但希伯斯却将这一秘密透露了出去 毕达哥拉斯大怒 将他扔入了大海 希伯斯发现的这类数 被称为无理数 毕达哥拉斯约公元前560 480年 无理数的引入解决了开方开不尽的矛盾 无理数 实数 实数集 问题1 在自然数集中方程有解吗 问题2 在整数集中方程有解吗 问题3 在整数集中方程有解吗 问题4 在有理数集中方程有解吗 问题4 在有理数集中方程有解吗 没有实数根 现在我们要进行数系的再一次扩充就是要解决这个问题 怎么解决 1545年 卡尔丹在 大衍术 中写道 要把10分成两部分 使二者乘积为40 这是不可能的 不过我却用下列方式解决了 能作为 数 吗 它表示什么意义 历史回顾 1637年 法国数学家笛卡尔把这样的数叫做 虚数 R Descartes 1596 1661 笛卡尔 虚数 1 形如a bi a b R 的数叫做复数 通常用字母z表示 3 全体复数所形成的集合叫做复数集 一般用字母C表示 2 复数的概念 实部 虚部 其中称为虚数单位 2 1 新数i叫做虚数单位 并规定 1 i2 1 2 实数可以与i进行四则运算 在进行四则运算时 原有的加法与乘法的运算律仍然成立 例题讲解 例1 写出下列复数的实部与虚部 解 4的实部为4 虚部为0 2 3i的实部为2 虚部为 3 0的实部为0 虚部为0 的实部为 虚部为 的实部为5 虚部为 6i的实部为0 虚部为6 三 复数的分类 复数a bi 如图所示 虚数集 实数集 纯虚数集 数学建构 例1 请指出哪些是实数 哪些是虚数 哪些是纯虚数 解 实数有 虚数有 纯虚数有 4 0 例题讲解 例2实数m取什么值时 复数是 1 实数 2 虚数 3 纯虚数 解 1 当 即时 复数z是实数 2 当 即时 复数z是虚数 例题讲解 如何定义两个复数相等 反之 也成立 如果两个复数的实部和虚部分别相等 那么我们就说这两个复数相等 则 想一想 例3 已知 复数相等的问题 转化 求方程组的解的问题 与 转化 复数问题实数化 解 根据两个复数相等的充要条件 可得方程组 解得 求实数 探究 任意两个复数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论