



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.22 直线和圆的位置关系第一课时教学内容 1直线和圆相交、割线;直线和圆相切、圆的切线、切点;直线和圆没有公共点、直线和圆相离等概念 2设O的半径为r,直线L到圆心O的距离为d 直线L和O相交dr 3切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 4切线的性质定理:圆的切线垂直于过切点的半径 5应用以上的内容解答题目 教学目标 (1)了解直线和圆的位置关系的有关概念(2)理解设O的半径为r,直线L到圆心O的距离为d,则有:直线L和O相交dr (3)理解切线的判定定理:理解切线的性质定理并熟练掌握以上内容解决一些实际问题 复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r直线和圆相切,讲授切线的判定定理和性质定理 重难点、关键 1重点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目 2难点与关键:由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价 教学过程 一、复习引入(老师口答,学生口答,老师并在黑板上板书)同学们,我们前一节课已经学到点和圆的位置关系设O的半径为r,点P到圆心的距离OP=d, 则有:点P在圆外dr,如图(a)所示; 点P在圆上d=r,如图(b)所示; 点P在圆内dr,如图(c)所示 二、探索新知 活动1:P95页思考:把海平面看作一条直线,太阳看作一个圆,由此你能得出直线与圆的位置关系吗? 由此你能归纳出直线和圆有几种位置关系吗? 如图(a),直线L和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线 如图(b),直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点如图(c),直线和圆没有公共点,这时我们说这条直线和圆相离活动2:判断正误:1、 直线与圆最多有两个公共点 .() 2、 若C为O上的一点,则过点C的直线与O相切. ( )3、 若A、B是O外两点, 则直线AB与O相离. ( )4、 若C为O内一点,则过点C的直线与O相交.( )活动3:思考:如何判断直线与圆的位置关系? 老师点评直线L和O相交dr,如图(c)所示 思考:在相切的情形下,意味着切点即为垂足,为什么呢?(用反证法,利用圆的轴对称性证明)小结:直线与圆的位置关系直线与圆的位置关系相交相切相离图 形 公共点个数 公共点名称 直线名称圆心到直线距离d与半径r的关系活动4、练习11、已知O的半径为5cm,O到直线a的距离为3cm,则O与直线a的位置关系是_。直线a与O的公共点个数是_。2、已知O的半径是4cm,O到直线a的距离是4cm,则O与直线a的位置关系是 _ _。3、已知O的半径为6cm,O到直线a的距离为7cm,则直线a与O的公共点个数是_。4、已知O的直径是6cm,O到直线a的距离是4cm,则O与直线a的位置关系是 _ _。练习21、设O的半径为4,点O到直线a的距离为d,若O与直线a至多只有一个公共点,则d为( )A、d4 B、d4 C、d4 D、d42、设p的半径为4cm,直线l上一点A到圆心的距离为4cm,则直线l与O的位置关系是( )A、相交 B、相切 C、相离 D、相切或相交三、归纳总结:1、直线与圆的位置关系3种:相离、相切和相交。2、识别直线与圆的位置关系的方法: (1)一种是根据定义进行识别: 直线L与O没有公共点 直线L与O相离。 直线L与O只有一个公共点 直线L与O相切。 直线L与O有两个公共点 直线L与O相交。 (2)另一种是根据圆心到直线的距离d与圆半径r数量 比较来进行识别: dr 直线L与O相离; d=r 直线L与O相切; dr 直线L与O相交。四、布置作业:P101习题24.2复习巩固2五、课后反思:用反证法证明“d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年社会服务行业理性消费与结构复苏并行关注情绪消费
- 中医药现代化进程中的国际市场拓展:2025年全球中医药产业链研究报告
- 医疗器械售后服务市场服务质量评价体系构建与服务质量提升报告
- 工业互联网平台网络隔离技术在医疗设备制造中的应用报告
- 2025年中医药现代化进程在埃塞俄比亚市场拓展策略研究报告
- 2025年医药企业研发外包(CRO)模式下的研发项目管理与团队协作报告
- 数字艺术市场交易平台在艺术品交易中的物流配送与仓储管理报告
- 施工项目浴室管理制度
- 中医药实验设备管理制度
- 乡镇幼儿园学籍管理制度
- 2024年河南省现场流行病学调查职业技能竞赛理论考试题库-上(单选题部分)
- 2025年国家开放大学《形势与政策大作业》试题与答案《形势与政策》形成性考试专题检测及大作业答案
- 浙江省金华市卓越联盟2024-2025学年高一下学期5月月考政治试题(含解析)
- 拱墅区长庆街道招聘工作人员笔试真题2024
- 无人机导航与定位试题及答案
- 《颈部肌肉与背部肌肉》课件
- 《继电器原理及其应用》课件
- 2025年浙江中考语文二轮复习热点题型专练:对联(原卷版)
- 中医药师承考试卷及答案
- 2025年上海奉贤区初三二模中考数学试卷试题(含答案详解)
- 汽车维修工(汽车车身涂装修复工)理论知识考核要素细目表
评论
0/150
提交评论