



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
反比例函数一、设计思路本节课的我们从学生熟悉的事例入手,创设问题情境,让学生在经历分析问题中各种量的关系的过程中,认识生活中的反比例关系,并根据这一认识继续创设情境,运用类比的思想方法与一次函数、正比例函数比较,得出反比例函数、比例系数的概念,通过这一点让学生明白生活中处处有数学,引发学生学习反比例函数的热情,使学生在主动探索中进一步体会反比例函数是刻画现实世界的一种有效的数学模型;结合情境1中的问题,认识反比例是怎么回事,理解反比例的意义,让学生认识当两个量的积是一定值时,这两个量成反比例关系,为下面学习反比例函数打好基础,让学生在列函数关系式的探索过程中掌握知识,形成技能,并在数学活动中给学生留下充分的时间思考练习及讨论,识别反比例函数及比例系数,初步感知用“待定系数法”确定比例系数,识别ykx1(k为常数,k0)和xyk(k0)的形式,进行简单运用,以此提高学生解决问题的应变能力、分析判断能力和创新意识.二、目标设计1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.三、活动设计活动内容师生互动思考与安排情境1:当路程一定时,速度与时间成什么关系?(svt)当一个长方形面积一定时,长与宽成什么关系?说明这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xym(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:v/(km/h)608090100120t/h随着速度的变化,全程所用时间发生怎样的变化?(3)速度v是时间t的函数吗?为什么?活动内容师生互动思考与安排说明(1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式svt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.(3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y(k为常数,k0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.说明这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k0.(3)自变量x的取值范围是x0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为ykx1(k为常数,k0)的形式,并结合旧知验证其正确性.四、例题教学活动内容师生互动思考与安排例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y;(2)y;(3)y ;(4)y3;(5)y;(6)y2;(7)y.说明这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y或ykxb的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x1,不是x,(2)式y与x1成反比例,它不是y与x的反比例函数. 对于(4),等号右边不能化成 的形式,它只能转化为的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x,看上去和(2)类似,但它可以化成,即k,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.例2:在函数y1,y,yx1,y中,y是x的反比例函数的有个.说明这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如ykx1的形式. 还有y1通分为y,y、x都是变量,分子不是常量,故不是反比例函数,但变为y1可说成(y1)与x成反比例.例3:若y与x成反比例,且x3时,y7,则y与x的函数关系式为.说明这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.五、拓展练习活动内容师生互动思考与安排1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少?(1)yx; (2)y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- IL4I1-IN-1-生命科学试剂-MCE
- 安全培训效果评审办法课件
- Hsp90-IN-41-生命科学试剂-MCE
- Herniarin-Standard-Methylumbelliferone-Standard-生命科学试剂-MCE
- HBeAg-ligand-1-生命科学试剂-MCE
- 小学医疗安全知识培训课件
- Glycocholic-acid-13C2-d4-生命科学试剂-MCE
- 2025年HED-系列厚膜阴极电泳涂料项目建议书
- 2025年宁波市鄞州区面向社会公开招聘社区专职工作者55人考前自测高频考点模拟试题及答案详解(网校专用)
- 快乐野营周记作文(14篇)
- 【精品】2020年职业病诊断医师资格培训考试题
- 五年级《欧洲民间故事》知识考试题库(含答案)
- 派车单(标准样本)
- 少先队大队委申请表
- 浦东机场手册
- 柴油机负荷特性曲线比较课件
- JGJ保温防火复合板应用技术
- 《认识液体》-完整版PPT
- 《跳长绳绕“8”字跳绳》教学设计-小学《体育与健康》(水平二)四年级上册-人教版
- 幼儿园绘本:《闪闪的红星》 红色故事
- 小学生符号意识与模型思想的发展与培养
评论
0/150
提交评论