




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
作正五角星与五等分圆周问题先看几个问题:1、 已知线段AB,在线段AB上求作一点C,使 . 2、 已知线段AB,求作ABE,使AB=AE,且BAE=36.3、 用直尺和圆规作一个正五角星。对于前述、两个问题,相信大家都会;一个是对线段进行黄金分割,一个是利用黄金分割作出黄金三角形。现在把两个问题化作一个问题给出作法如下:1.作BD= AB且BDAB,连接AD;2.以D为圆心,以BD为半径画弧,交AD于点P. 3.以A为圆心,以任AP为半径画弧,交AB于点C. 则。4. 分别以A为圆心AB为半径、以B为圆心AC为半径画弧,两弧交于点E。则BAE=36。ABCDPABCE此时点C为线段AB的黄金分割点,即,利用勾股定理很容易证明;至于ABE中,若AB=AE,且则BAE=36,ABE为黄金三角形,后边有证明过程,这里就不说了。现在来说一说怎么用尺规作图画正五角星的问题。 一说到作五角星,人们首先会想到五等分圆周,即作一个圆,找出它的五等分点,然后每隔一个点连一条线段,就可得到一个正五角星。恐怕很少有人会想到作正五角星与黄金三角形有什么关系。本文拟就如何五等分圆周来谈一谈作黄金三角形和作正五角星之间的关系。先来说一说五等分圆周问题。初一数学中,有五等分圆周的方法:先画一个圆,再任意画一条半径;因为3605=72,所以,只要以这条半径为一边,以圆心为顶点,顺次画五个72度的角,就可以把圆周五等分。但这种方法理论上说是可以的,而实际操作起来却很困难。因为用量角器量出的角度都是近似值。往往结果是画最后一个角的时候会发现这一个角与其他四个角大小不一样。到了初三年级时,学习了正多边形和圆之后,这个问题又被重新提了起来。再次提到五等分圆周时,初一年级时的那种方法就自然被否定了。那么,现在又如何五等分圆周呢?目前为止,五等分圆周的方法虽然有很多,但是无论哪种方法,先不论作图步骤的繁简,都不能用初中阶段的学生能理解的方法明确地说明作图的理论根据。因为尺规作图,是一种理论上比较严谨的作图方法,每一种作图方法都应有严密的逻辑证明;正因为如此,再加上工具简单、可操作性又比较强,所以尺规作图才成为人们比较喜欢的方法,而被广泛的应用于各种作图。如果有一种作图方法,不能应用数学的观点给出严密的理论证明,即使是作的再精确,也不能被人们广泛接受。就五等分圆周来说,最常见的有两种。一种作法是:以 O 为圆心, a 为半径作一个圆. 以 a 为半径在圆上相继取相等的弧 AB, BC, CD 和 DE. 以 AC 为半径, A 和 D 分别为圆心, 作弧相交于 F. 以 OF 为半径, A 为圆心作弧交圆 O 于 G. 仍以 OF 为半径, 分别以 C 和 E 为圆心, 作弧交于 H.GH 即是内接正五边形的边长, 以圆上任意一点开始, GH 为半径, 相继在圆上取 5 个点, 这 5 个点就可以五等分圆.这种作图的证明方法过于繁琐、深奥,一般人不太能看懂。还有一种方法普遍的被九年级的师生们广泛接受,作法如下:1、作圆O;2、作直径MN;3、过O作MN的垂线AO交圆O于;4、作OM的中点P;5、以P为圆心,PA长为半径作圆弧交直径于;6、以为圆心,为半径作圆弧,交圆于,再分别以,为圆心,长为半径作圆弧,交圆O于C,D。7、边结ABCDE,多边形ABCDE是正五边形MNOAPQBCDE图.作法并不复杂,但证明却很麻烦,证明如下:设图O的半径为1,根据以上作法,则OP=,PQ=PA=,QO=PQ=,所以AQ=另外,如图2圆O的半径为1,ABCDE为圆O的内接正五边形,S是AB的中点,则,故边长。如果我们能够证明则上述作法就是五等分圆周的尺规作图方法,是精确作法。下面我们推导,因为,所以。由倍角公式,有,即是下述三次方程的根。因式分解得故方程有下述三个根:,由于舍去,故方程的唯一正根是,所以,进而,由于根据作法,而已证,所以图中的是半径为1的正五边形的一条边,多边形ABCDE是正五边形,此种作法是精确作法。以上作法步骤简单,证明也比较严谨,但是,对于初中一线教师来说,它有一个致命的弱点,那就是,证明过程无法给学生讲解。那么,有没有一种方法,既能精确地五等分圆周,而又能用初三年级的学生看得懂的方法给出理论上的证明呢?答案是肯定的。作法如下:1、作圆O;2、作直径MN;3、过O作MN的垂线PQ交圆O于P、Q.;4、作ON的中点G;5.以G为圆心,OG长为半径作圆弧交直径PG于H;6.分别以O为圆心PH长为半径、以Q为圆心OQ长为半径作圆弧,两弧交于点F; 7.连接Q F并延长交圆O与点A; 8、以A为圆心,P长为半径作圆弧,交圆O于B,再以B为圆心,P长为半径作圆弧,交圆O于C,以C为圆心,P长为半径作圆弧,交圆O于D。9、连结ABCDP。多边形ABCDP是正五边形HGNMPQOFABCD图 证明:设圆O的半径为a, 则OG=a,PG= a.PH= a QO=QF=a OF=PH OF:OQ= QFO为黄金三角形 OQF=36 POA=72 PA是半径为a的圆O的内接正五边形的边。 作法是稍微麻烦了一些,但证明却比较简单,当然,现在又出现了一个问题,那就是:底边与一腰长之比等于的等腰三角形为黄金三角形,其顶角等于36度吗?。下面再来证明一下:如图,已知:ABC中,AB=AC, BC:AC= 求证:A=36证明:如图,在AC上截取AD=BC,连接BD; BC:AC=AD:AC= AD=AC= (AD+CD) AD=CD AD=CD= CD CD:AD=CD:AD = CD:BC = BC:AC 又 C= C ABC BCD AB=AC BC=BD=AD ABD= A A BCD图 BDC=C=2A =ABC C+A+ABC=180 5A=180A=36也就是说,底边与一腰长之比等于 的等腰三角形为黄金三角形,其顶角等于36度。 其实,五等分圆周,实际上就是作72度的圆心角。初一年级用的是量角器,初三年级则要求尺规作图。图的作法直接得出的是线段与圆的半径的比值,而要说明这样的弦在圆中所对的圆心角是72度,则需要经过繁琐的、初三年级的学生看不懂的证明;这种证明方法用到了高中才能学到的三角函数的诱导公式。而图则直接得到了36度的圆周角,再由同圆或等圆中同弧或等弧所对的圆周角是圆心角的一半,进而得到了72度的圆心角;用的都是初三年级的学生学过的知识,教师一讲学生就听得懂。比较上述两种作法,我认为还是图的作法更容易被学生接受。这是因为:图的作法虽然简单,但这种作法只能是教师给出,学生无法自行进行探究;作图一旦出现误差,教师无法用学生听得懂的方法说明它的可行性。而图则不然,这种方法学生可以在教师的引领下自己进行探究。图的作法,其实就是以圆的一条半径为腰在圆内构造黄金三角形。观察上述作法知道,我们只要得到了36度的角,在画出顶角为36度的等腰三角形的同时也就得到了72度的角。在图中,如果不延长QF而是直接延长OF与圆交于一点,一下子就可以得到72度的圆心角及其所对的弦,从而得到圆内接正五边形的边。用这种方法,不但可以五等分圆周,而且可以不用画圆就能直接画出正五角星。传统的画五角星的方法都是利用五等分圆周,好像离开了圆周的五等分就不能画五角星似的。其实在学习了黄金分割以后,学生再对黄金三角形有一定的理解,完全可以利用黄金分割的知识直接用尺规作图作出正五角星。具体方法如下:1.作线段AB;2.作线段BPAB且BP=AB,连结AP;3.以P为圆心,以PB为半径画弧交PA于点Q;4.分别以A为圆心AB为半径、PABQCDE图以B为圆心AQ为半径画弧,两弧交于点C;5.分别以C为圆心AB为半径、以A为圆心AQ为半径画弧,两弧交于点D;6.分别以D为圆心AB为半径、以C为圆心AQ为半径画弧,两弧交于点E.7.连结AC、CD、DE、EB。如图,则可得到正五角星。这个操作过程实际就是作黄金三角形的过程,图中的ABC就是一个黄金三角形。由线段的黄金分割与前面的黄金三角形的证明,可知这种做法是正确的。 由此可知,画正五角星与五等分圆周并没有直接的必然的关系,利用五等分圆周可以作出正五角星,利用作五角星同样也可以五等分圆周。把上述正五角星放入一个圆内并把它的一个顶点放在圆上,延长这个角的两边与圆相交,连接交点与圆心,此时就得到了72度的圆心角。如此看来,五等分圆周的问题可以转化为在圆内作一个顶点在圆上的任意正五角星的问题。如果说作正五角星还嫌麻烦,那就向圆内作顶角的顶点在圆上的黄金三角形;这个三角形只要顶角的顶点在圆上,至于腰是不是半径都没有关系。因为只要能得到36度的圆周角,就能得到72度的圆心角;而圆中72度的圆心角所对的弧是圆的五分之一,所对的弦是圆内接正五边形的边,是没有多少人会怀疑的。同样,如果有了长度之比为的两条线段,甚至可以作底角的顶点在圆心的黄金三角形,从而直接得到72度的圆心角,作法与图类似。 现在再回过头来看看图的作法,由其作图和证明过程可知,实际上也已经得到了长度与半径之比为的线段OQ;可惜的是没有利用这条线段构造黄金三角形,而是急于进一步得到圆内接正五边形的边,从而给问题的证明带来了麻烦。提到黄金分割,人们不会想到等分圆周;作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽校园活动策划执行方案
- 电的安全培训资料课件
- 超融合服务器应急预案方案
- 木质建筑防腐防虫方案设计
- 数字医疗与健康大数据分析报告:2025年市场洞察
- 电焊工安全培训教育课件
- 测量水的温度实验课件
- 电焊作业安全培训简短课件
- 电池充电安全知识培训课件
- 钢平台制安施工方案
- 耗材产品售后方案(3篇)
- 2025年全国保密教育线上培训考试试题库(含答案)
- DGTJ08-2004B-2020 建筑太阳能光伏发电应用技术标准
- 中医与现代医学融合的健康体重管理策略
- 反三违培训课件
- 数据中心供配电设施建设工程施工方案与技术措施
- 宝安妇幼保健医院医用气体监理工作细则
- 营销沟通技巧培训
- 严重创伤急救护理
- 校园设备投放管理制度
- 2026届新高考语文热点复习小说阅读
评论
0/150
提交评论