




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.3 正多边形与圆教学目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念。重点:正多边形的概念及正多边形与圆的关系。难点:利用直尺与圆规作特殊的正多边形。过程:一、情境创设:观察下列图形,你能说出这些图形的特征吗?提问:1等边三角形的边、角各有什么性质?2正方形的边、角各有什么性质?二、探索活动:活动一 观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念 概念: 叫做正多边形。(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n3)条边,就叫正n边形等边三角形有三条边叫正三角形,正方形有四条边叫正四边形活动二 用量角器作正多边形,探索正多边形与圆的内在联系1、用量角器将一个圆n(n3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;2、正多边形的外接圆的圆心叫正多边形的中心。活动三 探索正多边形的对称性问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。问题:正多边形与圆有什么关系呢?什么是正多边形的中心?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆圆心就是正多边形的中心。分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分要将圆五等分,把等分点顺次连结,可得正五边形要将圆六等分呢?你知道为什么吗?思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?结论:正多边形都是轴对称图形,一个正n边形有 条对称轴,每条对称轴都通过正n边形的 ;一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。活动四 利用直尺与圆规作特殊的正多边形问题:用直尺和圆规作出正方形,正六多边形。思考:如何作正八边形正三角形、正十二边形?拓展1:已知:如图,五边形ABCDE内接于O,AB=BC=CD=DE=EA求证:五边形ABCDE是正五边形拓展2:各内角都相等的圆内接多边形是否为正多边形?三、典型例题例1 已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积 ( 分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OMAB垂于M,在RtAOM中便可求得AM,又应用垂径定理可求得AB的长正六边形的面积是由六块正三角形面积组成的 ) 例2 利用你手中的工具画一个边长为3cm的正五边形四、课堂练习1、正方形ABCD的外接圆圆心O叫做正方形ABCD的_2、正方形ABCD的内切圆O的半径OE叫做正方形ABCD的_3、若正六边形的边长为1,那么正六边形的中心角是_度,半径是_,边心距是_,它的每一个内角是_4、正n边形的一个外角度数与它的_角的度数相等五、课堂小结1、正多边形的概念、正多边形与圆的关系以及正多边形的对称性;2、利用直尺与圆规作一些特殊的正多边形。正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距正多边形各边所对的外接圆的圆心角都相等正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角正n边形的每个中心角都等于 五、课堂作业:课时作业纸内容:正多边形与圆 班级 姓名 日期 月 日 一、填空题(每题3分,共30分)1如图,小亮从A点出发,沿直线前进10米后向左转30,再沿直线前进10米,又向左转30,照这样走下去,他第一次回到出发地A点时,一共走了 米2如图,是硬币圆周上一点,硬币与数轴相切于原点(与点重合)假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点恰好与数轴上点重合,则点对应的实数是_3如图,将边长为8cm的正方形ABCD的四边沿直线l想右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是 cm4如图,、相互外离,它们的半径都是,顺次连结四个圆心得到四边形,则图中四个扇形(阴影部分)的面积之和等于_(结果保留)ABC(B)DABC(D)(A)Dl(第2题) (第3题) (第4题)5中央电视台大风车栏目图标如图甲,其中心为,半圆ACB固定,其半径为,车轮为中心对称图形,轮片也是半圆形,小红通过观察发现车轮旋转过程中留在半圆ACB内的轮片面积是不变的(如图乙),这个不变的面积值是_(甲)(乙)(1) (2)(第5题) (第8题)6已知圆锥的侧面展开图是一个半园,则这个圆锥的母线长与底面半径长的比是 7学生小颖自制一个无底圆锥形纸帽,圆锥底面圆的半径为,母线长为,那么围成这个纸帽的面积(不计接缝)是_(结果保留三个有效数字)(第9题)8图(1)、图(2)是两种方法把6根圆形钢管用钢丝捆扎的截面图设图(1)、图(2)两种方法捆扎所需钢丝绳的长度是a、b(不记接头部分),则a、b的大小关系为:a_b(填“”、“”或“”) (第10题)9如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是_10如图,O1的半径O1A是O2 的直径,O1的半径交于点B,则和 的长度的大小关系是 二、选择题(每题3分,共24分)11已知正三角形外接圆半径为,这个正三角形的边长是() 12等边三角形的外接圆的面积是内切圆面积的()2倍 3倍 4倍 5倍13如图,一块含有30角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到 ABC的位置若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为( ) Acm Bcm Ccm Dcm14如图,的边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在三角形的相邻两边上),则这三条弧的长的和是()(第13题) (第14题) (第15题)15如图,分别以直角ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则( )AS1 S2 BS1 S2 CS1S2D无法确定16将如右图所示的圆心角为90的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是( )OBA17如图,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥的侧面展开扇形的纸片的圆心角度数是( )A150B200C180D24018如图,在半径为的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第个内切圆,它的半径是( )A1ABCDEF2B1C1D1E1F11(第17题) (第18题) (第19题)A B C D三、解答题(共46分)19(8分)右图的花环状图案中,ABCDEF和A1B1C1D1E1F1都是正六边形.(1)求证:1=2;(2)找出一对全等的三角形并给予证明20(10分)如图1、2、3、n,M、N分别是O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、正n边形ABCDE的边AB、BC上的点,且BM=CN,连结OM、ONABCDOMNEFG图nABCDOMNE图3ACBMNO图ABCDOMN图2(1)求图1中MON的度数;(2)图2中MON的度数是_,图3中MON的度数是_;(3)试探究MON的度数与正n边形边数n的关系(直接写出答案)21(10分)如图1,分别表示边长为的等边三角形和正方形,表示直径为的圆图2是选择基本图形用尺规画出的图案,(1)请你从图1中任意选择两种基本图形,按给定图形的大小设计一个新图案,还要选择恰当的图形部分涂上阴影,并计算阴影的面积;(尺规作图,不写作法,保留痕迹,作直角时可以使用三角板)图2图1(2)请你写一句在完成本题的过程中感受较深
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生心理健康教育 课件 第十一章大学生的网络心理辅导
- 资料员之资料员基础知识能力检测试卷(考点提分)附答案详解
- 2024河北省辛集市中考数学复习提分资料【重点】附答案详解
- 自考专业(建筑工程)考试历年机考真题集【B卷】附答案详解
- 耐药菌感染的预防护理与控制策略
- 2024山东科技职业学院单招《英语》模考模拟试题【学生专用】附答案详解
- 旅游上班合同(标准版)
- 中策职业学校钱塘学校轨道交通虚拟现实驾驶体验中心项目招标文件
- 信息网络运行维护管理规范方案
- 中小学生安全教育的策划方案(31篇)
- 2024广东省产业园区发展白皮书-部分1
- 2025年国家网络安全宣传周网络安全知识考核试题
- 2025四川蜀道建筑科技有限公司招聘16人备考练习题库及答案解析
- 生态视角下陕南乡村人居环境适老化设计初步研究
- “研一教”双驱:名师工作室促进区域青年教师专业发展的实践探索
- 2025-2030中国教育领域的虚拟现实技术行业发展战略与应用趋势预测报告
- 2025广西现代物流集团第三次招聘109人笔试备考试题及答案解析
- 2025年上海市安全员-A证(企业主要负责人)考试题库及答案
- 2025年中职历史考试题及答案
- 水电验收现场清理方案(3篇)
- 图书出口管理办法
评论
0/150
提交评论